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A strategy for extracting regular temporal patterns in a
controlled manner from chaotic dynamics

Enables us to harness the richness of chaos in a direct and
efficient way
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Principle : Restricts available phase space

Dynamic Range Limiter

F Prunes chaotic temporal sequences to stable desired
patterns

F Chaos advantageous as it possesses a rich range of
temporal patterns which can be clipped to different
behaviours
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Consider a general dynamical system, and choose a state
variable to be monitored

Threshold Mechanism is triggered whenever the value of
the variable exceeds a critical threshold x∗

The variable is then re-set to x∗

If x > x∗ then x = x∗

The dynamics continues till the next occurrence of the
variable exceeding the threshold
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Different regular dynamical patterns obtained for different
thresholds

For example for the chaotic logistic map f(x) = 4x(1 − x)

x∗ < 0.5 : Fixed point
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Different regular dynamical patterns obtained for different
thresholds

For example for the chaotic logistic map f(x) = 4x(1 − x)

x∗ < 0.5 : Fixed point

0.5 < x∗ < 0.809 : Period 2

0.809 < x∗ < 0.85 : Period 4

x∗ = 0.86 : Period 6

x∗ = 0.88 : Period 7

x∗ = 0.9 : Period 9
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The Controlled Period – Threshold Correspondence
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Exact relations for the position and width of the periodic
windows in threshold parameter space :

Provides a look-up table to directly extract widely
varying temporal patterns

Yields a wide range of response patterns from the
same module

Thus useful for designing components that can switch
flexibly between different behaviours

Requires no run-time computations

Transience is extremely short; Very robust

Controller simple
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Analysis

Directly calculate the period corresponding to a certain
threshold
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Analysis

Directly calculate the period corresponding to a certain
threshold

Answer the reverse (important) question as well:
what threshold do we need to set in order to obtain a
certain period
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Be-heading the Chaotic Map

Study the forward iterates of the map with initial value at
threshold: f(x∗), f2(x∗), . . .

Ascertain which iterate exceeds the threshold

If the kth iterate exceeds the threshold then we obtain
period k

Formulate the different solutions using the inverse map:
L and R
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Starting point of the analysis : the chaotic system, being
ergodic, is guaranteed to exceed threshold at some point in
time, at which point its state is re-set to x∗

One then studies the forward iterations of the map, starting
from this state x = x∗, i.e.

f0(x
∗), f1(x

∗) . . .

where fk(x
∗) is the kth iterate of the map
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Specifically for the logistic map f(x) = 4x(1 − x) :

k = 0 ; f0(x
∗) = x∗

k = 1 ; f1(x
∗) = 4x∗(1 − x∗)

k = 2 ; f2(x
∗) = 4(4x∗(1 − x∗))(1 − 4x∗(1 − x∗))

In general

fk(x
∗) = f ◦ fn−1(x

∗) = f ◦ f ◦ . . . f ◦ (x∗)

where threshold value 0 < x∗ < 1
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First iterate xn+1 (—) of the effective thresholded map for
different thresholds x∗

The intersection of the flat portion of the map xn+1 with the
450 line yields a superstable fixed point of period 1
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Iterates xn+1 (—) and xn+2 (- - -) of chaotic map under
thresholding : x∗ = 0.8

The intersection of the flat portion of the map xn+2 with the
450 line yields a superstable fixed point of period 2
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Threshold value : 0.922
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Forward iterates of the chaotic logistic map starting from
the threshol d value x∗
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When the fk(x
∗) curve lies above the f0(x

∗) = x∗ line we
have a k cycle : as this implies that the kth iterate exceeds
the critical value x∗ and is re-set to x∗

x∗ = f0(x
∗) is the first point in the cycle

k - Cycle : x∗, f1(x
∗), f2(x

∗), . . . fk−1(x
∗)

For instance, in the range 0 ≤ x∗ ≤ 3

4
the f1(x

∗) curve lie
above the f0 curve (i.e. f1(x

∗) > x∗)

So the chaotic element is adapted back to x∗ at every
iterate, yielding a period 1 fixed point
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In the range 3

4
< x∗ < 0.9 the f1(x

∗) curve dips below
the 450 line, but the f2(x

∗) curve lies above the 450 line

This imples that the second iterate of the map (starting
from x = x∗) exceeds threshold and is adapted back to
x∗, thus giving rise to a period 2 cycle

Thus the cycle at each value of threshold is the smallest
k such that the kth iterate of the map (starting from
x0 = x∗) is greater than x∗, i.e.

fk(x
∗) > x∗

The chaotic element can then yield a wide variety of
dynamical behaviour determined by the threshold
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In this manner the threshold mechanism leads to
regular cyclic evolution, whose period depends on the
threshold

Thus in threshold parameter space we can find
windows of various periods

These are intervals where the following equation is
satisfied:

Period P (x∗) = k iff fk(x
∗) ≥ x∗ and fl(x

∗) < x∗ for all
l < k.

P (x∗) is a piecewise continuous function of x∗

– p. 17



For every cycle of periodicity k there will be several
windows

Upper bound of 2k−1 windows for period k

The “middle” of the period k windows lies approximately
where the curve fk(x

∗) touches 1 (since if it touches 1 it
has to have exceeded x∗, as x∗ < 1)

Then the solutions of the equation fk(x
∗) = 1 gives

the x∗ values corresponding to a period k
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The solutions can be formulated as:

f−1 ◦ f−1 ◦ f−1 ◦ f−1(1)

where f−1 is the (double valued) inverse map :

f−1(y) =
1

2
±

√
1 − y

2

This has two values : on the right of the centre (denoted
as R) and on the left of the centre (denoted as L)

For f−1(1) : L(1) = R(1) = 1
2

For all other values : L < R
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Number of distinct values arising from the expression
f−1 ◦ f−1 . . . f−1(1) is 2k−1

These arise from the 2k−1 different possible
combinations of R and L

The evaluation of this algebraic expression for various
values of k is simple and direct
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The existence of a window of period k (k > 1) is
dependent on the pervious iterates as well, i.e. a
solution for period k may be masked by the fact that
some iterate l, l < k, may have fl(x

∗) > x∗

For instance for k > 1 all combinations starting with
symbol L are masked by period 1 (as the period 1

window extends from 0 to 3
4

and L(x) ≤ 1
2
)

So half of the combinations of f−1 ◦ f−1 . . . f−1(1) are
swallowed by period 1

One has to examine the remaining 2k−2 combinations to
check which ones survive masking by lower order
windows.
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Note that one family of windows is guaranteed to exist:

RLk−1(1)

as all iterates leading up to 1 here, namely all the
subsequences L(1), L2(1), ... Lk−1(1), have value less
than 1

2
(as they are all composed of L)

Since all relevant thresholds for k > 1 are greater than 3
4

it implies that all the iterates leading up to fk(x
∗) have

value less than x∗ and so this sequence will always
yield period k (not any other lower period)

So all possible periods k have atleast one stable
window in threshold space
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For chaotic maps it can then be analytically shown :

Threshold control yields periods of all orders

The system is trapped in a super-stable cycle the
instant it exceeds threshold

Thresholding clips chaos to desired time sequences

Periodicity enforced on the sequences : thresholding
acts as a re-setting of initial conditions

Ref: Sudeshna Sinha,
Physical Review E, 1993; Physics Letters A, 1994;
Also reviewed in Int. J. of Modern Physics, 1995
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Experimental verification of clipping chaos to periods of
wide ranging orders

Chaotic Trace 6 - Cycle

Circuit Realization of the Logistic Map

Murali, Sinha and Ditto, Physical Review E, 2003
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Complete agreement with theoretical analysis
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Does thresholding work beyond iterative 1d maps?
Can continuous time higher dimensional (possibly
hyper-chaotic) systems be clipped?

No exact results : must rely on numerics and
experimentation
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Nonlinear third order ordinary differential equations

d3x
dt3

+ A d2x
dt2

+ dx
dt

= G(x)

where G(x) is a piecewise linear function:

G(x) = B|x| − C

with B = 1.0, C = 2.0 and A = 0.6
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The circuit realisation of the above uses resistors,
capacitors, diodes and operational amplifiers
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Precision Clipping Circuit for Thresholding
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Circuit realization of coupled third order nonlinear
differential equations
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Double scroll chaotic Chua’s attractor given by the following
set of (rescaled) 3 coupled ODEs

ẋ = α(y − x − g(x))(1)

ẏ = x − y + z(2)

ż = −βy(3)

The piecewise linear function

g(x) = bx + 1
2
(a − b)(|x + 1| − |x − 1|)

Parameters: α = 10., β = 14.87, a = −1.27 and b = −0.68
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Thresholding Chua’s Circuit

Murali and Sinha, Physical Review E, 2003
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Hyperchaotic electrical circuit

Constitutes a stringent test of the control method since the
system posseses more than one positive lyapunov
exponent, and so more than one unstable eigendirection
has to be reigned in by thresholding a single variable.
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Consider the realisation of four coupled nonlinear
(rescaled) ODEs of the form:

ẋ1 = (k − 2)x1 − x2 − G(x1 − x3)

ẋ2 = (k − 1)x1 − x2

ẋ3 = −x4 + G(x1 − x3)

ẋ4 = βx3

where

G(x1 − x3) = 1

2
b[|x1 − x3 − 1| + (x1 − x3 − 1)]

with k = 3.85, b = 88 and β = 18
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Hyper Chaotic Attractor Controlled Orbit

Murali and Sinha, Physical Review E, 2003
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Simple Thresholding selects out a very wide variety of
patterns even in hyperchaotic systems
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Pinsky-Rinzel Neuron : Controlling Spiking
8 coupled ODEs : thresholding one variable

(a)

(b)

Sinha and Ditto, Physical Review E, 2001
– p. 39



Laser System:

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bzr

z variable corresponds to the normalized inversion
x and y variables correspond to normalized amplitudes of
the electric field and atomic polarisations

Parameter values, obtained by detailed comparison with
experiments, for the corresponding coherently pumped
far-infrared ammonia laser system are: σ = 2, r = 15 and
b = 0.25
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Laser System: Lorenz-like Attractor
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Sinha and Ditto, Physical Review E, 1999
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Thresholding at Varying Intervals
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Varying control intervals offers flexibility in selecting
different patterns
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Opportunities offered by Chaos

Determinism : allows reverse engineering
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Opportunities offered by Chaos

Determinism : allows reverse engineering

Richness of temporal behaviour : can be used to obtain
a wide range of temporal patterns

Large range of controlled responses : Obtained from
very simple mechanisms
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Application of thresholding as a strategy for extracting a
wide range of temporal patterns from a chaotic system in a
controlled manner :

Exploiting Chaos to Design Flexible Hardware

A new direction in harnessing chaos:

Chaos provides a rich variety of behaviors :

Can serve as a versatile pattern generator

Exploit this flexibility for implementing computational
tasks
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Chaos for Computation

Hardware : Threshold activated chaotic elements
Chaotic Chip, Chaotic Processor

Programming these elements consists of fixing thresholds
such that some desired operation is performed

i.e. certain I/O relations are satisfied

Sinha & Ditto, Physical Review Letters, September 1998
Physcial Review E, 1999
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Aim :

Implement all the basic logic gates flexibly using a chaotic
element

With the ability to switch between different operational roles

This will allow a more dynamic architecture

Serve as ingredients of a general purpose device more
flexible than statically wired hardware

– p. 49



Demonstrate the direct implementation of all the logic gates
which are basic and sufficient components of computer
architecture today

Sinha, Munakata & Ditto, Phys. Rev. E, 2002

Munakata, Sinha & Ditto, IEEE Trans. on Circuits and Systems, 2002
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Flexible implementation : the same chaotic processor can
serve as any of the gates by simple change of threshold

Inputs : State of the chaotic element x → x0 + I1 + I2

Output : Obtained by Threshold Mechanism after Chaotic
Update

O = f(x) − x? if f(x) > x?

O = 0 if f(x) < x?
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Necessary and Sufficient conditions to be satisfied
simultaneously

AND OR XOR
f(x0) ≤ x∗ f(x0) ≤ x∗ f(x0) ≤ x∗

f(x0 + I) ≤ x∗ f(x0 + I) − x∗ = I f(x0 + I) − x∗ = I

f(x0 + 2I) − x∗ = I f(x0 + 2I) − x∗ = I f(x0 + 2I) ≤ x∗

NAND NOT
f(x0) − x∗ = I f(x0) − x∗ = I

f(x0 + I) − x∗ = I f(x0 + I) ≤ x∗

f(x0 + 2I) ≤ x∗
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Robust solutions exist

Operation AND OR XOR NAND NOT
x0 0 1
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Richness of the dynamics allows one to select out all the
different requisite responses from the same module

Scheme has been experimentally verified
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Flexible Dynamic Logic Cell :

Simple mechanism allows one to switch with ease between
behaviours emulating different logic gates

This provides sufficient ingredients for directly and flexibly
implementing all operations

Universal General Purpose computing device

More versatile than static hardware

– p. 54



Contrast with periodic elements:

It is not possible to extract all the different logic responses
from the same element in case of periodic components, as
the temporal patterns are inherently limited.

Contrast with random elements:

One cannot design components : need determinism for
reverse engineering
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Only Chaotic dynamics enjoys both

richness
and

determinism

So one can select out all the different temporal responses
necessary to obtain all the different logic patterns with a
single evolution function

This ability allows us to construct flexible hardware
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Programmable hardware ; Re-configurable hardware

Building blocks of a Dynamical Logic Architecture

Pre-determined dynamic logic configuration

Out-come dependent dynamic logic configuration

Possibility of the hardware design evolving during the
computation
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Threshold control enables us to exploit the richness of
chaos in a direct and efficient manner

Used clipped chaos as a pattern generator for the
development of a flexible logic module
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