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What is the spatiotemporal behaviour of a collection of elemental
dynamical units with varying degrees of randomness in their
connections?

How does switching the underlying connectivity network influence
the spatiotemporal patterns?

What emerges from the interplay of the nodal dynamics and the
changing links?
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Consider a one-dimensional ring of coupled nonlinear maps

The Sites (Nodes, Vertices) are denoted by integers i = 1, . . . ,N
where N is the size of the Lattice (Network)

On each site is defined a state variable denoted by xn(i)

Corresponds to the physical variable of interest
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The evolution of this lattice in discrete time n
under standard nearest neighbour interactions :

xn+1(i) = (1− ǫ)f (xn(i)) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

Strength of Coupling : ǫ

The Local On-Site Map could, for instance, be the fully Chaotic
Logistic Map:

f (x) = 4x(1 − x)
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Now consider the system with its coupling connections rewired
randomly in varying degrees

At every update we will connect a fraction p of randomly chosen
sites in the lattice to two random sites

That is, we will replace a fraction p of nearest neighbour links by
random connections

p = 0 : corresponds to the usual nearest neighbour interaction

p = 1 : corresponds to completely random coupling
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◮ Dynamic Rewiring : random links are switched

◮ Static Rewiring (Quenched) : fixed random links

Switched Random Links brings a new relevant time-scale to the
problem:

Time-scale at which underlying web of connections changes
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Dynamically Rewired Connections :

First, consider fast network changes

Specifically, at every dynamical update of the nodal state, the links
are switched
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Coupled logistic maps with regular nearest neighbour connections
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Coupled strongly chaotic logistic maps withCoupled strongly chaotic logistic maps with dynamically changing
random connections

(Sinha, 2002)
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Dynamic Random Links create a large window in coupling
parameter space where a spatiotemporal fixed point state gains
stability

Onset of spatiotemporal fixed point : ǫ∗

For completely random coupling p = 1 : ǫ∗ ∼ 0.6

For all p > 0 : there is a stable region of synchronized fixed points

i.e. for all finite p, ǫ∗ < 1
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In the stable region of synchronized fixed points

namely, in the parameter interval ǫ∗ ≤ ǫ ≤ 1 :

All sites are stabilzed at x∗

where x∗ is the strongly unstable in the local chaotic map
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In order to analyse the stability of the network with all sites at x∗,
we will construct an average probabilistic evolution rule for the sites

Mean Field version of the dynamics:

All sites have probability p of being coupled to random sites, and
probability (1− p) of being wired to nearest neighbours

Then the averaged evolution equation of a site j is

xn+1(j) = (1 − ǫ)f (xn(j)) + (1− p) ǫ2 {xn(j + 1) + xn(j − 1)}
+p ǫ

2 {xn(ξ) + xn(η)}

where ξ and η are random integers between 1 and N
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Analysis of the probabilistic evolution equation for the fully chaotic
logistic map gives the stability condition:

1

1 + p
< ǫ < 1

which yields:

ǫ∗ =
1

1 + p
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So the range of stability R = 1− ǫ∗ is

R = 1−
1

1 + p
=

p

1 + p

For small p (p << 1) standard expansion gives

R ∼ p

◮ Regular nearest neighbour coupling ( p = 0 ) gives a null
range

◮ Fully random connections ( p = 1 ) yields the largest stable
range : R ∼ 1/2
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Stable synchronized fixed point range R vs. random rewiring
probability p

Solid line : analytical result; Dotted line: R = p
Points : Simulations (with different lattice sizes

N = 10, 50, 100, 500)

(Sinha, 2002)
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Coupled tent maps (open squares)
Coupled circle maps (open triangles)
Coupled logistic maps (open circles)

Similar effects of switched random links was found in networks of
coupled maps, where the local maps the exhibited the interesting
and potentially useful property of robust chaos
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Static Rewiring

For dynamical rewiring : the synchronization range R is
independent of the size and initial network connections

On the other hand, for static rewiring there is a spread in the
values of R obtained from different realisations of the random
connections
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The distribution of R is dependent on the size of network, with
average R scaling with N as :

< R >∼ N−ν

with ν ∼ 0.24
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Average range < R > of spatiotemporal synchronization obtained
in the case of static random connections with respect to network
size N ( p = 1 )
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◮ This behaviour can be understood by a examining the linear
stability of the homogeneous solution: xn(j) = x∗ for all sites
j at all times n

◮ Considering the dynamics of small perturbations over the
network, one obtains the transfer matrix connecting the
perturbation vectors at successive times to be a sum of :

◮ N × N diagonal matrix : with entries (1 − ǫ)f ′(x∗)
◮ ǫ/2× C : where C is the connectivity matrix

For example: for p = 1, C is a N ×N sparse non-symmetric matrix
with two random entries of 1 on each row
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◮ The minimum of the real part of the eigenvalues of C, λmin,
crucially governs the stability

◮ Typically ǫ∗ = 2/{λmin + 4} when f ′(x∗) = −2

◮ Now the values of λmin obtained from different static
realisations of the connectivity matrix C are distributed
differently for different sizes N

◮ For small N this distribution is broad and has less negative
averages (∼ −1)

◮ On the other hand for large N the distribution gets narrower
and tends towards the limiting value of −2

◮ This implies that the range of stability tends to zero for large
enough networks under static rewiring
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Dynamic Rewiring (Switched Random Links) : Spatiotemporal
Fixed Point

Static Rewiring (Frozen Random Links) : Spatiotemporal Chaos
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Static to Dynamic Transition

How fast does a network have to rewire in order to induce
spatiotemporal order?

A Mondal, SS, J Kurths, Phys. Rev. E (2008)

V. Kohar, P Ji, A. Choudhary, SS, J. Kurths, Phys. Rev. E (2014)

A. Kumar, V. Agrawal and SS, Euro. Phys. J. B (2015)
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r = 100 r = 1
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Critical rewiring time period in ǫ− p space
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Range of the spatiotemporal fixed point R vs p f , where p is the
rewiring probability and f = 1/r is the network rewiring frequency
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When the random connections are quite static, the dynamics of the
network is spatiotemporally chaotic

However, when these random links are switched around fast,
namely the network is rewired frequently, one obtains a
spatiotemporal fixed point over a large range of coupling strengths

Namely, rapidly switched random links enhance spatiotemporal
regularity

Evidence of a sharp transition from a globally attracting
spatiotemporal fixed point to spatiotemporal chaos as the rewiring
frequency is decreased
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Ring of Coupled Cells

The single cell consists of a minimal biochemical pathway of
three-step reaction sequence

It is a general model of a large variety of functional dynamics
observed in cellular systems

with Somdatta Sinha & S. Rajesh
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Here, a substrate S1 is converted to another substrate S2 and it is
then converted to S3 through a reaction mediated by an enzyme

It is assumed that two different feedback loops governs the
regulatory process of the pathway

The first one is a negative feedback, which is provided by the
end-product inhibition of S2 by S3 and the other is due to the
autocatalytic production of S2 by S3 by the enzyme
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dx

dt
= F (z)− kx

dy

dt
= x − G (y , z)

dz

dt
= G (y , z)− qz

F (z) = 1
1+z4

; G (y , z) = Ty(1+y)(1+z)2

L+(1+y)2(1+z)2

Coupling : Diffusion of end-product z
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p = 0 p = 0.05
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Efficiency of Dynamic Rewiring vis-a-vis Static Disorder
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Infection Spreading on a Dynamically Changing Network

with Vivek Kohar (2013)
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Evolution of the number of infected sites

Network rewiring periods r = 1 (top), r = 3 (middle) and r = 5
(bottom)
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Central observation:

◮ Transition from low quasi-fixed state (analogous to endemic
infection) to self-sustained oscillations (analogous to periodic
outbreak of disease) as links switch more frequently

◮ Namely, disease cycles get more synchronized, indicating the
onset of epidemics, as the underlying network changes more
rapidly

◮ What matters is, not just the topology of the connectivity
matrix, but how fast (if at all) the links change
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Multiplex Networks

◮ A large class of engineered and natural systems, ranging from
transportation networks to neuronal networks, are best
represented by multiplex network architectures, namely a
network composed of two or more different layers where the
mutual interaction in each layer may differ from other layers.

◮ We considered a multiplex network where the intralayer
coupling interactions are switched stochastically with a
characteristic frequency.

◮ We explored the intralayer and interlayer synchronization of
such a time-varying multiplex network.

◮ To quantify the local stability of complete synchronous states
we use the Master Stability Function approach, and for global
stability we employ the concept of Basin Stability.
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◮ Interestingly, we clearly find that the higher frequency of
switching links in the layers enhances both intralayer and
interlayer synchrony, yielding larger windows of
synchronization.

◮ We investigated the robustness of interlayer synchronization
against a progressive demultiplexing of the multiplex
structure, and we find that for rapid switching of intralayer
links, the interlayer synchronization persists even when a large
number of interlayer nodes are disconnected.

Time-varying multiplex network: Intralayer and interlayer synchronization,
S. Rakshit, S. Majhi, B.K. Bera, Sudeshna Sinha, and D. Ghosh,

Physical Review E December 2017
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Hyper-Networks

◮ We study the firing patterns and synchronization of coupled
Hindmarsh-Rose model neurons with hyper-network
architecture, involving two distinct types of networks arising
from interactions that occur through the electrical gap
junctions and the chemical synapses.

◮ Specifically, we consider the connections corresponding to the
electrical gap junctions to form a small world network, while
the chemical synaptic interactions form a unidirectional
random network.
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(a) The chemical transmission happen through unidirectionally by chemical synapses.
(b) Bidirectionally electrical transmission is mediated through the electrical gap
junctional channel. (c) Mixed synaptic interaction: simultaneously electric and
chemical synaptic interaction is happen between two neuron. (d) Heterosynaptic
interaction: one neuron is interacted with two other neuron simultaneously, one
connected through gap junction channel and other with chemical synapses.
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◮ All the connections in the hyper-network are allowed to vary
in time, by rewiring the links stochastically with a
characteristic rewiring frequency.

◮ We find that the coupling strength necessary to achieve
complete neuronal synchrony is lower when the links are
switched rapidly.

◮ Further, the average time required to reach the synchronized
state decreases as synaptic coupling strength and/or rewiring
frequency increases.
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◮ Further, we investigate the resilience of the synchronous
states with respect to increasing network size, and find that
synchrony can be maintained up to larger network sizes by
increasing either synaptic strength or rewiring frequency.

◮ Lastly we find that time-varying links not only promote
complete synchronization, but also have the capacity to
change the local dynamics of each single neuron.

◮ Specifically, in a window of rewiring frequency and synaptic
coupling strength, we observe that the spiking behavior
becomes more regular.

Emergence of synchronization and regularity in firing patterns in time-varying neural
hyper-networks

S. Rakshit , B.K. Bera, D. Ghosh and Sudeshna Sinha (submitted)
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Taming Blow-ups through Dynamic Random Links

with Anshul Chowdhary & Vivek Kohar,

Scientific Reports (Nature) (2014)
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a synchronized state (top row) whereas slower rewiring leads to
de-synchronized distorted limit cycles (bottom row).
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(B)

Variation of the Boundedness Order Parameter (solid red curve) and the

Synchronization Order Parameter (dotted blue curve), for varying

fraction of random links p.

Network rewiring time period (A) r = 0.01 and (B) r = 0.1.
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pr : Link Rewiring Probability
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“Boundedness Order Parameter” : for pr = 0.1 and pr = 0.9
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Random links enhance the sensitivity of networks to

heterogeneity

Ultrasensitivity to Non-Uniformity in Networks of Bi-Stable
Dynamical Elements

Scalable ultra-sensitive detection of heterogeneity via coupled bistable dynamics,
K P Singh, R Kapri & SS, Europhysics Letters, 2012

Verification of scalable ultra-sensitive detection of heterogeneity in an electronic
circuit,
V Kohar, A Choudhary, K P Singh and SS, Eur. Phys. J. ST, 2013

Random links enhance the sensitivity of networks to heterogeneity,
Pranay Deep Rungta & SS, Europhysics Letters, Dec 2015
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Probe the evolution of N bistable elements, coupled to k
neighbours, given by:

ẋi = G (xi) + ai + C

[

1

k
Σk
j=1(xj − xi )

]

+ b

◮ Interaction term is a sum over the k neighbors of the i th

node, and gives the local field experienced by each element

◮ C : strength of coupling

◮ Local dynamics is determined by G (xi ) which is a generic
nonlinear function giving rise to a bistable potential

◮ Parameter b is a global bias, common to the elements, and
can be used as a “control lever” to tip the collective
behaviour of the system to different patterns
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◮ Local parameter ai may differ from element to element,
leading to heterogeneity in the system

◮ This local parameter determines the location and depth of the
stable states of the nodal dynamics in the uncoupled case

◮ N0 is the number of elements with ai = 0, and N1 = N − N0

is the number of elements with ai = 1.
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The principal question is: how sensitive are collective dynamical
features, which can be considered as the output of the system, to
small inhomogeneity?

Namely can the collective response, such as the ensemble average
〈x〉, detect and reflect small differences in ai?
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Regular Networks

Number of sites N1 with ai = 1 is (left to right) 0, 1, 30
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Network with Static Random Links

Number of sites N1 with ai = 1 is (left) 0 and (right) 1

Fraction of random links p = 0.8
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Network with Dynamically Changing Random Links

Number of sites N1 with ai = 1 is (left) 0 and (right) 1

Fraction of random links p = 0.8
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Evolution of the Mean-Field : ultrasensitivity to

heterogeneity

For the case of random links the presence of just one distinct
element in a network of size 100 swings the collective field from
around −1 to 1, while for a regular ring of bistable elements the
presence of 1 distinct element changes the mean field incrementally.
Response time of dynamically changing network is more rapid
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Outlook

◮ Dynamically changing links can induce spatiotemporal order

◮ Time-varying networks can prevent catastrophic blow-ups

◮ Random rewiring enhances the sensitivity of networks of
bi-stable systems to heterogeneity
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