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Lattices of coupled maps were introduced as simple
models capturing the essential features of nonlinear
dynamics of extended systems

Such models yield suggestive conceptual frameworks
for spatiotemporal phenomena, in fields ranging from
biology to engineering

The ubiquity of distributed complex systems made
lattices of nonlinear maps a focus of sustained research
interest
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Then along came the network boom!

Various studies showed that some degree of randomness in
spatial coupling is closer to physical reality than strictly
regular scenarios

Many systems of biological, technological and physical
significance are better described by randomising some
fraction of the regular links
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What is the spatiotemporal dynamics of a collection of
elemental dynamical units with varying degrees of
randomness in its spatial connections?
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Consider a one-dimensional ring of coupled nonlinear maps

The sites (nodes) are denoted by integers i = 1, . . . , N
where N is the size of the lattice (network)

On each site is defined a continuous state variable denoted
by xn(i)

Corresponds to the physical variable of interest
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The evolution of this lattice in discrete time n
under standard nearest neighbour interactions :

xn+1(i) = (1 − ǫ)f(xn(i)) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

Strength of coupling : ǫ

The local on-site map could, for instance, be the fully
chaotic logistic map:

f(x) = 4x(1 − x)
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Now consider the system with its coupling connections
rewired randomly in varying degrees

At every update we will connect a fraction p of randomly
chosen sites in the lattice to two random sites

That is, we will replace a fraction p of nearest neighbour
links by random connections

p = 0 : corresponds to the usual nearest neighbour
interaction

p = 1 : corresponds to completely random coupling
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Dynamic Rewiring : random links are switched

Static Rewiring (Quenched) : fixed random links
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Coupled logistic maps with regular nearest neighbour
connections
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Coupled strongly chaotic logistic maps with completely
random connections

(Sinha, 2002)
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Dynamic Random Links create a large window in coupling
parameter space where a spatiotemporal fixed point state
gains stability

Onset of spatiotemporal fixed point : ǫ∗

For completely random coupling p = 1 : ǫ∗ ∼ 0.6

For all p > 0 : there is a stable region of synchronized fixed
points

i.e. for all finite p, ǫ∗ < 1
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In the stable region of synchronized fixed points

namely, in the parameter interval ǫ∗ ≤ ǫ ≤ 1 :

All lattice sites i are synchronized at xn(i) = x∗ = 3/4

Where x∗ = f(x∗) is the fixed point solution of the individual
chaotic maps

x∗ : strongly unstable in the local chaotic map
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Analyse this system to account for the much enhanced
stability of the homogeneous phase under random
connections

Only possible solution for a spatiotemporally synchronized
state :

All xn(i) = x∗ only when x∗ = f(x∗)

For the case of the logistic map at r = 4:

Fixed point solution of the local map x∗ = 4x∗(1 − x∗) = 3/4
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To calculate the stability of the lattice with all sites at x∗ we
will construct an average probabilistic evolution rule for the
sites :

mean field version of the dynamics

Some effects due to fluctuations are lost, but as a first
approximation we have found this approach qualitatively
right, and quantitatively close to to the numerical results as
well

. – p.14/67



All sites have probability p of being coupled to random sites,
and probability (1 − p) of being wired to nearest neighbours

Then the averaged evolution equation of a site j is

xn+1(j) = (1 − ǫ)f(xn(j)) + (1 − p) ǫ
2 {xn(j + 1) + xn(j − 1)}

+p ǫ
2 {xn(ξ) + xn(η)}

where ξ and η are random integers between 1 and N
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Linear Stability Analysis of the coherent state:

Replacing xn(j) = x∗ + hn(j), and expanding to first order
gives

hn+1(j) = (1− ǫ)f ′(x∗)hn(j) + (1− p) ǫ
2 {hn(j + 1) + hn(j − 1)}

+p ǫ
2 {hn(ξ) + hn(η)}

≈ (1 − ǫ)f ′(x∗)hn(j) + (1 − p) ǫ
2 {hn(j + 1) + hn(j − 1)}

i.e., to a first approximation one can consider the sum over
the fluctuations of the random neighbours to be zero

This approximation is clearly more valid for small p
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For stability considerations one can diagonalize the above
expression using a Fourier transform

hn(j) =
∑

q

φn(q) exp(ijq)

where q is the wavenumber and j is the site index

This finally leads us to the following growth equation:

φn+1

φn

= f ′(x∗)(1 − ǫ) + ǫ(1 − p) cos q

with q going from 0 to π
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Clearly the stabilization condition will depend on the nature
of the local map f(x) through the term f ′(x)

Considering the fully chaotic logistic map with f ′(x∗) = −2,
one finds that the growth coefficient that appears in this
formula is smaller than one in magnitude if and only if

1

1 + p
< ǫ < 1

i.e.

ǫ∗ =
1

1 + p
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The range of stability R = 1 − ǫ∗ is

R = 1 −
1

1 + p
=

p

1 + p

For small p (p << 1) standard expansion gives

R ∼ p

Regular nearest neighbour couplings ( p = 0 ) gives a
null range

Fully random connections ( p = 1 ) yields the largest
stable range : R ∼ 1/2
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Synchronized Fixed Point Range R vs. random rewiring
probability p

Solid line : analytical result; Dotted line: R = p

Points : Simulations (with different lattice sizes N = 10, 50, 100, 500)

(Sinha, 2002)
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So stability analysis clearly dictates that enhanced
stability of the spatiotemporally homogeneous phase
must occur under random connections, just as
numerical evidence shows

So any degree of randomness in spatial coupling
connections opens up a synchronized fixed point
window

Dependence of the stability on p : monotonic

No enhancement at dilute rewiring (’small world limit’)
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Results from Other Models

Coupled tent maps, with the local map given as:

f(x) = 1 − 2|x − 1/2|

Unstable fixed point : x∗ = 2/3

Local slope : f ′(x∗) = −2
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Coupled circle map networks, where the local map is

f = x + Ω −
K

2π
sin(2πx)

A representative example: Ω = 0,K = 3

Unstable fixed point : x∗ = 1
2π

sin−1(Ω/K)

Local slope : f ′(x∗) = −2

In both systems random rewiring yields stable
spatiotemporal synchronisation

. – p.23/67



Coupled sine circle maps with strictly regular nearest
neighbour connections
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Coupled sine circle maps with completely random
connections
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Since f ′(x∗) = −2 for both the tent map and the circle
map, we expect from our analysis that their ǫ∗ and R will
be the same as for the logistic map

This agrees with simulations :

Numerically obtained ǫ∗ values for ensembles of
coupled tent, circle and logistic maps fall
indistinguishably around each other, even for high p
where the analysis is expected to be less accurate
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Coupled tent maps (open squares)
Coupled circle maps (open triangles)
Coupled logistic maps (open circles)
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Static Rewiring

For dynamical rewiring : the synchronization range R is
independent of the size and initial network connections

On the other hand, for static rewiring there is a spread in
the values of R obtained from different realisations of the
random connections
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The distribution of R is dependent on the size of network,
with average R scaling with N as :

< R >∼ N−ν

with ν ∼ 0.24
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Average range < R > of spatiotemporal synchronization
obtained in the case of static random connections with
respect to network size N ( p = 1 )
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This behaviour can be understood by a examining the
linear stability of the homogeneous solution: xn(j) = x∗

for all sites j at all times n

Considering the dynamics of small perturbations over
the network, one obtains the transfer matrix connecting
the perturbation vectors at successive times to be a
sum of :

N × N diagonal matrix : with entries (1 − ǫ)f ′(x∗)

ǫ/2 × C : where C is the connectivity matrix

For example: for p = 1, C is a N × N sparse non-symmetric
matrix with two random entries of 1 on each row
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The minimum of the real part of the eigenvalues of C,
λmin, crucially governs the stability

Typically ǫ∗ = 2/{λmin + 4} when f ′(x∗) = −2

Now the values of λmin obtained from different static
realisations of the connectivity matrix C are distributed
differently for different sizes N

For small N this distribution is broad and has less
negative averages (∼ −1)

On the other hand for large N the distribution gets
narrower and tends towards the limiting value of −2

This implies that the range of stability tends to zero for
large enough networks under static rewiring
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Same Fraction of Random Links at all times

Dynamic Rewiring (Switched Random Links) :
Spatiotemporal Fixed Point

Static Rewiring (Frozen Random Links) : Spatiotemporal
Chaos
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Static to Dynamic Transition

Poster of Arghya Mondal

How fast does a network have to rewire in order to induce
spatiotemporal order?
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Coupled Model Neurons

with Maruthi Pradeep, Abhijit Sonawane, Prashant Gade
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Nodal Dynamics: Maps that reproduce some of the basic
features of the firing dynamics of neurons

For instance:

xt+1 = x2
t exp(yt − xt) + k

yt+1 = ayt − bxt + c

x : related to an instantaneous membrane potential of
the neuron

y : equivalent to a recovery current
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parameter a : determines the time constant of
reactivation

parameter b : the activation dependence of the recovery
process

parameter c : the maximum amplitude of the recovery
current

parameter k : can be viewed either as a constant bias
or as a time-dependent external stimulation

The parameters here are chosen so as to make the
dynamics completely chaotic
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Phase diagram of coupled model neurons in the space of
coupling strength ǫ and rewiring probability p
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Instantaneous spatial pattern in the network : p = 0 and
p = 1
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Time series of of a representative model neuron
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Range of spatial synchronisation increases with p

0.0 0.2 0.4 0.6 0.8 1.0
10-3

10-2

10-1

 

 

R
an

ge
 o

f C
ou

pl
in

g

p

Exact analytic calculation : matches numerics

. – p.41/67



Network of Non-identical Neurons : synchronization is
robust

Dynamic (Switched) random links gives rise to stronger
synchronization than quenched (static) random links

Quenched random coupling reduces synchronization
error but does not yield complete synchronization as
obtained by dynamic random coupling
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Neuronal Model II:

xn+1 = f(xn, yn + β)

yn+1 = yn − µ(xn + 1) + µσ

where xn is the fast and yn is the slow variable, and

f(x, y) = α/(1 − x) + y when x ≤ 0
f(x, y) = α + y when 0 < x < α + y
f(x, y) = 1 when x ≥ α + y

Many different activity patterns occur at varying time scales:
including both spiking and bursting
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Phase Synchronization: Bursting pattern in-phase

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Time n

. – p.44/67



For Spiking, Bursting and Spiking-Bursting Patterns :
synchronization is enhanced by increasingly random links
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Ring of Coupled Cells

The single cell consists of a minimal biochemical pathway
of three-step reaction sequence

It is a general model of a large variety of functional
dynamics observed in cellular systems

Somdatta Sinha, Rajesh
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Here, a substrate S1 is converted to another substrate S2
and it is then converted to S3 through a reaction mediated
by an enzyme

It is assumed that two different feedback loops governs the
regulatory process of the pathway

The first one is a negative feedback, which is provided by
the end-product inhibition of S2 by S3 and the other is due
to the autocatalytic production of S2 by S3 by the enzyme

. – p.47/67



dx

dt
= F (z) − kx

dy

dt
= x − G(y, z)

dz

dt
= G(y, z) − qz

F (z) = 1
1+z4 ; G(y, z) = Ty(1+y)(1+z)2

L+(1+y)2(1+z)2

Coupling : Diffusion of end-product z
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p = 0 p = 0.05
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Efficiency of Dynamic Rewiring vis-a-vis Static Disorder
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Epidemic Modelling

Basic question: How does the dynamics of an infectious
disease depend on the structure and connectivity of a
population ?

Role of the underlying network structure on the temporal
dynamics of the epidemic

How does the dynamics of the disease at the individual
level (at the nodes) affect the spread of infection ?
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Broad qualitative features of the spread of infectious
disease can be captured by a simple model : SIRS
(Susceptible-Infected-Refractory-Susceptible)

Crucial ingredient : connection network :

Yields transition from low quasi-fixed state (analogous
to endemic infection) to self-sustained oscillations
(analogous to periodic outbreak of disease) as random
links increases

The formation of persistent oscillations in increasingly
random networks corresponds to a spontaneous
synchronization of a significant fraction of the elements
in the system

. – p.52/67



Nonlocal connections important in the spread of disease:
outbreaks can affect locations far apart geographically
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But timescales of the intrinsic disease cycle (nodal
dynamics) also play a role

Longer disease cycle leads to large periodic oscillations
arising from synchronized disease outbreaks
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An intuitive reason for this : For longer cycles the
information that a given site is infected can propagate more,
since the site stays infected for a longer time

Effective information transfer leads to collective phenomena
like periodic excitations appearing spontaneously in the
system
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For instance, Ebola is far more deadly virus than HIV and
kills the host much faster as it has a much shorter
incubation period

However, due to the very fact that it kills so swiftly, Ebola
outbreaks are contained very soon

The people infected by Ebola die very quickly, and so the
virus has less time to jump to a new host and spread the
disease

If no new victims come in contact with the body fluids of
infected people in their short lifetime, the epidemic stops

On the other hand, HIV remains a problem worldwide since
victim lives longer and has longer time to infect others
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Transition point decreases as the disease progresses more
slowly

. – p.58/67



Thus there is a clear interplay between the probability of
nonlocal connections p and the timescales in the system

This suggests that in an extended parameter space one
can find synchronization transitions at infinitesimal p in the
very slow driving parameter limit
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Asynchronous Updating enhances Spatiotemporal
Regularity

with Mitaxi Mehta (2000)

with Manish Shrimali & Kazu Aihara (2007)
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2-dimensional lattices of coupled chaotic maps

352 Chaos, Vol. 10, No. 2, 2000
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Stability Analysis with Probabilistic Dynamical Evolution
Equation yields good match with numerics
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Threshold Coupled Systems

Local neuronal dynamics
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Outlook

The regularising effect of random non-local coupling
suggests a mechanism for regulation in natural physical
and biological systems

It also can help in designing efficient control methods
for spatially extended interactive systems

Significance of the Interplay between nodal dynamics
and connectivity

Significance of dynamic rewiring vis-a-vis static rewiring
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