
1. Some background

A ring R is a set on which the operations of addition, subtraction and multipli-
cation are defined. Moreover, we also have an element 1 which is a multiplicative
identity. (Subtraction means that we must have 0 which is an additive identity.)
We will work with rings R in which ab = ba; these are called commutative rings.
If you do not know any sophisticated rings then you can think of the ring Z of
integers.

One way to create a new ring is to consider the set Mn(R) of n × n matrices
with entries in the ring R. We can define multiplication and addition of matrices
in the usual way. This is a very fruitful way of creating new rings from old and has
paved the way for most of the algebra of the 20th century.

However, today we will look at a different approach. Given matrices A and B

which are possibly of different sizes, we define A⊕B as the block matrix

(
A 0
0 B

)
.

We can also define A⊗B as the block matrix
a11B a12B . . . a1pB
a21B a22B . . . a1pB

...
...

. . .
...

ap1B ap2B . . . appB


Note that A⊕B is not (in general) the same as B⊕A and so on. How do we make
these operations into “proper” addition and multiplication operations?

We note that the characteristic polynomial of A⊕B is the product of the char-
acteristic polynomial of A and the characteristic polynomial of B. Is there a way
to understand the characteristic polynomial of A⊗B in a similar way?

Consider the polynomial det(1−At) for some variable t. We note a very impor-
tant fact:

The coefficients of the characteristic polynomial of a matrix are the
values of a universal polynomial in the entries of the matrix.

The polynomial is “universal” in the sense that it does not depend on the coefficients
of the matrix but only on its size.

Given any polynomial P (t) of the form 1 + s1t+ . . . spt
p, Cayley showed how we

can write a matrix AP for which det(1− At) = P (t). So we could define addition
and multiplication of such polynomials by declaring

P ⊕Q = det(1− (AP ⊕AQ)t)

P ⊗Q = det(1− (AP ⊗AQ)t)

Written this way it becomes obvious that:

The coefficients of P ⊕ Q and P ⊗ Q are the values of universal
polynomials applied to the coefficients of P and Q.

Can we further clarify these operations in any way?

1.1. Some heuristic calculations. If A is diagonalisable with distinct eigenvalues
ai, we can write

det(1−At) =
∏

(1− ait)
Note that the right-hand side can be expanded as∏

(1− ait) = 1− s1t+ s2t
2 + · · ·+ (−1)pspt

p

1
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where

s1 = a1 + · · ·+ ap

s2 = a1a2 + a1a3 + · · ·+ a1ap + a2a3 + · · ·+ ap−1ap

s3 = a1a2a3 + . . .

and so on (each sk is the sum of the products of k distinct ai’s). These are called
the elementary symmetric functions of the eigenvalues of the matrix since:

(1) The sk do not change if we permute the order in which we write the roots.
(2) Every function of (a1, . . . , ap) that does not change when we permute the

ai’s is actually a function of (s1, . . . , sp).

This shows us an important fact:

The symmetric functions in the eigenvalues of a matrix are universal
polynomials in the entries of the matrix.

In particular, we can determine these symmetric functions without calculating the
eigenvalues of the matrix.

The product expression above has an important formal consequence. Formally,
we have

− log(1− at) =
∑
k≥1

(at)k/k

which gives

−t d
dt

log(1− at) =
∑
k≥1

aktt

Adding up the expressions for the various ai’s we obtain

gA(t) = −t d
dt

log det(1−At) ==
∑
i

−t d
dt

log(1− ait) =
∑
k≥1

(∑
i

aki

)
tk

The expressions Nk =
∑

i a
k
i are called the Newton polynomials of the eigenvalues

(since Newton first worked with them). Expanding the left hand side formally using
− log(1 − x) =

∑
i≥1 x

i/i we can obtain an expression of the Newton polynomials
in terms of the symmetric polynomials.

The reason for this long calculation is to note the following formulae. Let us
write

gA(t) =
∑
i

Ni(A)ti and gB(t) =
∑
i

Ni(B)ti

Then we have

gA⊕B(t) =
∑
i

(Ni(A) +Ni(B)) ti

gA⊗B(t) =
∑
i

(Ni(A) ·Ni(B)) ti

In particular, at some level we are doing ordinary addition and multiplication!
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2. Lambda of a ring

With the above background, we can define Λ+(R) to be the collection of all
polynomials with coefficients in R such that the constant term is 1. Let P 7→ AP

denote the map that associates a polynomial of degree p to its p × p companion
matrix:

P = 1 + s1t+ s2t
2 + · · ·+ spt

p 7→ AP =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

sp sp−1 sp−2 . . . s1


In that case, P = det(1 +AP t). Given P and Q in Λ+(R) we define define addition
and multiplication

P ⊕Q = det (1 + (AP ⊕AQ)t)

P ⊗Q = det (1 + (AP ⊗AQ)t)

Note that

det(1 +At) = det
(
1 + (G−1AG)t

)
Using this and suitable choices of G one can show that these operations are com-
mutative and associative. Moreover ⊗ distributes over ⊕. The constant polynomial
1 acts as identity for ⊕ and the polynomial (1 + t) acts as identity for ⊗.

One important point to note is that the coefficients of tk in P ⊕Q or P ⊗Q do
not depend on the coefficients of tl in P or Q when l > k.

Let Λn(R) denotes the collection of all polynomials of degree at most n which
have constant term n. We define ⊕ and ⊗ as above except that we ignore all terms
in the expressions that involve tk for k > n. As a result of the above point, we note
that this way of ignoring higher order terms does not change the formulas for the
coefficients of powers of t in P ⊕Q or P ⊗Q.

In the opposite direction one can define Λ(R) to be the collection of all (formal)
power series of the form P = 1+

∑∞
k=1 skt

k. There is a natural map Λ(R)→ Λn(R)
called truncation that restricts to the first n+1 terms of the power series. By what
has been said above, the operations ⊕ and ⊗ extend to Λ(R). In addition, we have
“subtraction”. The formal power series as above has the formal inverse

(1 +

∞∑
k=1

skt
k)−1 = 1− (

∞∑
k=1

skt
k) + (

∞∑
k=1

skt
k)2 + . . .

By expanding these we see that the coefficient of tk is a universal polynomial in
(s1, . . . , sk); in other words, it does not involve sl for l > k. We define 	P as the
right-hand side.

3. Witt ring

A slightly different approach is to consider the collection W (R) of all product
series of the form

P =

∞∏
k=1

(1− wkt
k)
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Let

P =

∞∑
k=1

skt
k

denote the expansion of the right-hand side. We can see that

sk = wk + Uk(w1, . . . , wk−1)

Note that w1 = s1. Hence, by induction, this means that there are universal
polynomials Vk so that

wk = sk + Vk(s1, . . . , sk−1)

It follows that the association (w1, . . . , wk) 7→ (s1, . . . , sk) is one-to-one and onto.
In other words, W (R) is in fact in bijection with Λ(R).

We thus see that W (R) is closed under the operations ⊕ and ⊗. We note that
the product (⊗) of elements of W (R) has the nice formula∏

k≥1

(1− xktk)⊗
∏
l≥1

(1− yltl) =
∏

l,k≥1h=gcd(k,l)

(1− xl/hk y
k/h
l )h

The isomorphism given above between W (R) and Λ(R) allows us to interchange
between the two.

3.1. Witt’s ghosts. We can give a heuristic reason for this as follows. Assume

that each wn has an n-th root w
1/n
n and that ζn is a primitive n-th root of unity.

We can then write

P =

∞∏
k=1

k−1∏
i=0

(1− w1/k
k ζikt)

We then get

−t d
dt

logP =

∞∑
n=1

( ∞∑
k=1

(
k−1∑
i=0

w
n/k
k ζnik

))
tn

We use the “cancellation of characters” which says

k−1∑
i=0

ζnik =

{
0 k does not divide n

k n = kd

The above expression then simplifies to

−t d
dt

logP =

∞∑
n=1

∑
k|n

kw
n/k
k

 tn

The terms
w(n) =

∑
k|n

kw
n/k
k

are called Witt’s ghost components. As noted above, the formulae for ⊕ and ⊗ can
be viewed as addition and multiplication of the ghost components.


