The Shlafly Double Six

Kapil Hari Paranjape

The Institute of Mathematical Sciences

Institute Seminar Week, 7th March 2008

Algebra versus Geometry

People normally say that pictures are *easier* to understand than calculations.

Algebra versus Geometry

People normally say that pictures are *easier* to understand than calculations.

This lecture may provide a counter-example!

what is the Shlalfy Double-Six

A double-six consists of a pair of ordered 6-tuples of lines (P_0, \ldots, P_5) and (Q_0, \ldots, Q_5) such that each P_i meets all the Q_j except Q_i .

Here is the algebraic solution:

Here is the algebraic solution:

1. We take a general linear polynomial aT + bX + cY + dZ and consider the cubic surface S defined by the equation

$$(aX + bY + cZ + dT)(XY - ZT) + eXY(X + Y - Z - T) = 0$$

Here is the algebraic solution:

1. We take a general linear polynomial aT + bX + cY + dZ and consider the cubic surface S defined by the equation

$$(aX + bY + cZ + dT)(XY - ZT) + eXY(X + Y - Z - T) = 0$$

2. Pick some t and let

$$e = \frac{(at+c)(dt+c)}{(t-1)(dt-c)}$$

Here is the algebraic solution:

1. We take a general linear polynomial aT + bX + cY + dZ and consider the cubic surface S defined by the equation

$$(aX + bY + cZ + dT)(XY - ZT) + eXY(X + Y - Z - T) = 0$$

2. Pick some t and let

$$e = \frac{(at+c)(dt+c)}{(t-1)(dt-c)}$$

3. Then S contains the lines

$$P_1 := X = Z = 0$$
 ; $P_2 := Y = T = 0$
 $P_3 := X = T \land Y = Z$
 $Q_4 := X = Z \land Y = T$
 $Q_5 := Y = Z = 0$: $Q_6 := X = T = 0$

The rest of the lines can be found once one constructs the line Q_1 .

The rest of the lines can be found once one constructs the line Q_1 .

1. The line R_{16} defined by X=0 and aX+bY+cZ+dT=0 is also contained in S.

5 / 1

The rest of the lines can be found once one constructs the line Q_1 .

- 1. The line R_{16} defined by X=0 and aX+bY+cZ+dT=0 is also contained in S.
- 2. Let Q_1 be the unique line that meets P_3 and R_{16} and meets P_2 in the point (t:0:1:0). The above choice of e ensures that Q_1 lies in e.

The rest of the lines can be found once one constructs the line Q_1 .

- 1. The line R_{16} defined by X=0 and aX+bY+cZ+dT=0 is also contained in S.
- 2. Let Q_1 be the unique line that meets P_3 and R_{16} and meets P_2 in the point (t:0:1:0). The above choice of e ensures that Q_1 lies in S.

The key point is to notice that given two intersecting lines in S, the plane that contains them meets S in another line.

The rest of the lines can be found once one constructs the line Q_1 .

- 1. The line R_{16} defined by X=0 and aX+bY+cZ+dT=0 is also contained in S.
- 2. Let Q_1 be the unique line that meets P_3 and R_{16} and meets P_2 in the point (t:0:1:0). The above choice of e ensures that Q_1 lies in S.

The key point is to notice that given two intersecting lines in S, the plane that contains them meets S in another line.

Using this one can easily write down 19 more lines in S. The Shlafly Double-six is part of this collection of 27 lines!

6 / 1

6 / 1

6 / 1

The completed figure

