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Finite Sets

I Kronecker said “God gave natural numbers.”

I Man can only work with finite sets!

I We should not underestimate the complexity of finite sets.

I The Pigeon Hole Principle is useful for proofs but often
“useless” in practice.

I The collection of all Mathematics graduates in India at a
specific time/date is a finite set — but is it a number?

I The talk could also be given the title Scheme Theory for
Discrete Mathematicians.

I Hilbert is supposed to have had an interest in an
“elementary” approach to algebraic geometry. Here
elementary is in the sense of logic and not number theory.
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Operations with Finite Sets

Finite sets have the following properties:

1. There are “special” finite sets 1 (singleton) and 0 (empty) so
that there are unique maps zA : 0→ A and sA : A→ 1 for
any finite set A.

2. Given finite sets A and B, the collection of maps hom(A,B) is
another finite set. Similarly, the disjoint union A

∐
B and the

product A× B are finite sets.

3. Given maps p : A→ C and q : B → C we can form the fibred
product A×C B consisting consisting of pairs (a, b) where
p(a) = q(b). This too is a finite set.

4. We have a special set Ω (doublet) and an inclusion 1→ Ω so
that each subset S of a set A is of the form A×Ω 1 for a
suitable map s : A→ Ω. It follows that the power set
P(A) = hom(A,Ω) of a finite set is also a finite set.
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Categories

Category-theorists will summarise the above by saying that finite
sets form a topos. Recall the notion of a category.

1. A category has objects and morphisms between objects.

2. Each object A has a morphism 1A : A→ A called the identity
morphism.

3. Morphisms f : A→ B and g : B → C can be composed to
obtain a morphism g ◦ f : A→ C .

4. We have the identity f ◦ 1A = f = 1B ◦ f .

5. Composition of morphisms is associative.
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Limits

An elementary topos is a category with some additional properties.
First of all we have:

1. There is a special object 1 so that each object A has a unique
morphism A→ 1.

2. Given morphisms p : A→ C and q : B → C , there is an
object A×C B with morphisms πA : A×C B → A and
πB : A×C B → B so that p ◦πA = q ◦πB . Moreover, given an
object T and morphisms f : T → A and g : T → B so that
p ◦ f = q ◦ g , there is a unique morphism (f , g) : T → A×C B
so that πA ◦ (f , g) = f and πB ◦ (f , g) = g .

These two are equivalent to the assertion that finite limits exist in
the sense of category theory.
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Power Sets

In addition, for every object A we have a power object (P(A), SA)
where SA is a sub-object of A× P(A) (the latter is defined once
there are limits!).

This has the property that given a relation R ⊂ A× B (here ⊂
indicates a monomorphism) between B and A there is a unique
morphism cR : B → P(A) so that R is canonically isomorphic to
SA ×A×P(A) (A× B).
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Some Basic Properties

Some “standard” categorical algebra allows one to deduce from
these properties all the other properties of finite sets mentioned
above. In other words, the existence of the following.

I The 0 object with a unique morphism to every object.

I The amalgamation or join of a : C → A and b : C → B to
give an object A ∨C B.

I The sub-object classifier Ω. (Warning: This is not the doublet
in a general topos even when 1 is thought of as a singleton.)

I The object hom(A,B) classifying morphisms A→ B.

Note that 0 is deduced unlike traditional set theory!
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Monoid and Groups

A monoid object in a topos is (M, e,m) where e : 1→ M is the
identity “element” and m : M ×M → M is the multiplication. The
usual axioms for a monoid can be written as follows:

m ◦ (e ◦ sA, 1M) =m ◦ (1M , e ◦ sA) = 1M

m ◦ (1M ×m) =m ◦ (m × 1M)

Note that a monoid can also be thought of as a single object A
with morphisms M as a sub-object of hom(A,A) which contains 1A
and is closed under composition.
A group object is a monoid together with a morphism ι : M → M
representing the inverse. It satisfies

m ◦ (1M , ι) = m ◦ (ι, 1M) = e ◦ sA

In the topos of finite sets, this gives the notion of a finite group.
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Rings and Subcategories

A ring object in a topos a (R, e, z ,m, a) where (R, e,m) is a
monoid and (R, z , a) is a group with the distributive law

m ◦ (π1, a ◦ π23) =a ◦ (m ◦ π12,m ◦ π13)

m ◦ (a ◦ π12, π3) =a ◦ (m ◦ π13,m ◦ π23)

As usual we can define the notion of monoid homomorphisms,
group homomorphisms and ring homomorphisms. This leads us to
the definition of the subcategories of monoid objects, group
objects and ring objects where morphisms are restricted to
homomorphisms of that particular type.
This gives us the categories M of finite monoids, G of finite
groups, R of finite rings and C of commutative finite rings.
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objects and ring objects where morphisms are restricted to
homomorphisms of that particular type.
This gives us the categories M of finite monoids, G of finite
groups, R of finite rings and C of commutative finite rings.



Functors

A functor F from a category C to another category D is an
assignment of an object F (A) in the second category to an object
A in the first category and a morphism F (f ) : F (A)→ F (B) to a
morphism f : A→ B in the first category.

Moreover, we must have F (1A) = 1F (A) and
F (g ◦ f ) = F (g) ◦ F (f ).
We are interested in functors from the subcategory C of
commutative finite rings to the category of finite sets. Schemes of
finite type (over Z) will be represented as such functors.
One such functor is the forgetful functor which “forgets”
everything except the underlying finite set R. This will represent
the affine line A1.
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Affine Schemes

Given two functors X and Y from C to finite sets, we can form the
product X × Y which takes a finite commutative ring A to
X (A)× Y (A).

This allows us to define An as the n-fold product of
A1 with itself.
We can now define the affine scheme V (X1, . . . ,Xp; f1, . . . , fq) as

V (X1, . . . ,Xp; f1, . . . , fq)(A) = {(a1, . . . , ap)|fi (a1, . . . , ap) = 0,∀i}

Note that this definition by “set comprehension” makes sense in
any topos as long as fi are polynomials with integer coefficients.
Further, note that the product of affine schemes is also an affine

scheme

V (X1, . . . ,Xp; f1, . . . , fq)× V (Y1, . . . ,Yk ; g1, . . . , gl) =

V (X1, . . . ,Xp,Y1, . . . ,Yk ; f1, . . . , fq, g1, . . . , gl)
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Morphisms

A morphism (natural transformation) f : X → Y between two
functors is an assignment of a morphism f (A) : X (A)→ Y (A) so
that various obvious diagrams commute.

A closed sub-scheme of Y = V (X1, . . . ,Xp; f1, . . . , fq) an affine
scheme of the form X = V (X1, . . . ,Xp; f1, . . . , fq, . . . , f

′
q).

We define a morphism f : X → Y of affine schemes to be a
morphism of functors so that the graph Γf is a closed sub-scheme
of X × Y .
In order to validate this definition we need to compare it with the

usual one.
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Group Schemes and Vector Group Schemes

An affine group scheme is a functor from C to finite groups such
that the underlying set-valued functor is an affine scheme.

For example, we can send each finite ring to the underlying
additive group which gives the additive group Ga.
A vector group scheme over S is the fibre product of:

I The “zero section” z : S → Gq
a ×S which sends s to (z , s).

I A “fibre-wise linear” morphism l : Gp
a ×S → Gq

a ×S .

If S = V (X1, . . . ,Xp; f1, . . . , fq) then we can take l to be a matrix
with entries as polynomials in the variables X1, . . . ,Xq).
The importance of vector group schemes over S is that it is the

dual category of the “usual” category Coh(S) of coherent sheaves
on S .
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Remarks

The category of schemes of finite type can be constructed in the
usual way by “patching”.

So also the category of coherent sheaves
on such schemes.
This completes the construction of the basic objects of algebraic

geometry (as for example in Hartshorne’s Chapters 1 and 2) upto
the finite type and coherence assumption.
In principle, it would be possible to define more general schemes

in terms of “ind” and ”proj” limits. However, since we do not have
an infinite object in our category, this would not make sense! The
same applies to quasi-coherent sheaves.
It remains to be seen whether all or most proofs in algebraic

geometry can be achieved within the topos of finite sets!



Remarks

The category of schemes of finite type can be constructed in the
usual way by “patching”. So also the category of coherent sheaves
on such schemes.

This completes the construction of the basic objects of algebraic
geometry (as for example in Hartshorne’s Chapters 1 and 2) upto
the finite type and coherence assumption.
In principle, it would be possible to define more general schemes

in terms of “ind” and ”proj” limits. However, since we do not have
an infinite object in our category, this would not make sense! The
same applies to quasi-coherent sheaves.
It remains to be seen whether all or most proofs in algebraic

geometry can be achieved within the topos of finite sets!



Remarks

The category of schemes of finite type can be constructed in the
usual way by “patching”. So also the category of coherent sheaves
on such schemes.
This completes the construction of the basic objects of algebraic

geometry (as for example in Hartshorne’s Chapters 1 and 2) upto
the finite type and coherence assumption.

In principle, it would be possible to define more general schemes
in terms of “ind” and ”proj” limits. However, since we do not have
an infinite object in our category, this would not make sense! The
same applies to quasi-coherent sheaves.
It remains to be seen whether all or most proofs in algebraic

geometry can be achieved within the topos of finite sets!



Remarks

The category of schemes of finite type can be constructed in the
usual way by “patching”. So also the category of coherent sheaves
on such schemes.
This completes the construction of the basic objects of algebraic

geometry (as for example in Hartshorne’s Chapters 1 and 2) upto
the finite type and coherence assumption.
In principle, it would be possible to define more general schemes

in terms of “ind” and ”proj” limits. However, since we do not have
an infinite object in our category, this would not make sense! The
same applies to quasi-coherent sheaves.

It remains to be seen whether all or most proofs in algebraic
geometry can be achieved within the topos of finite sets!



Remarks

The category of schemes of finite type can be constructed in the
usual way by “patching”. So also the category of coherent sheaves
on such schemes.
This completes the construction of the basic objects of algebraic

geometry (as for example in Hartshorne’s Chapters 1 and 2) upto
the finite type and coherence assumption.
In principle, it would be possible to define more general schemes

in terms of “ind” and ”proj” limits. However, since we do not have
an infinite object in our category, this would not make sense! The
same applies to quasi-coherent sheaves.
It remains to be seen whether all or most proofs in algebraic

geometry can be achieved within the topos of finite sets!



Justification

The usual definition of a morphism

V (X1, . . . ,Xp; f1, . . . , fq)→ V (Y1, . . . ,Yk ; g1, . . . , gl)

is to give polynomials hi (X1, . . . ,Xp) for i = 1, . . . , k such that
gj(h1, . . . , hk) lies in the ideal generated by fi .
One can show that the earlier definition is equivalent to this one:

1. We can show that the morphism Γf → X is quasi-finite and
that the morphism Γf × A1 → X × A1 is quasi-finite.

2. We can show that when both these morphisms are
quasi-finite, then the morphism Γf → X is finite.

3. We can show that a finite morphism which is bijective on
points on finite rings is an isomorphism.

This proof is much to long to present here and also goes outside
the topos of finite sets!
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More Justification

Further justification for this approach to the study of schemes can
be seen from the fact that we have just defined schemes entirely in
terms of their points over finite (commutative) rings.

This gives
credence to the belief that most geometric concepts can be derived
just from knowing this information.
What happens if we replace C by R? This appears to be a possible
approach to talking about non-commutative algebraic geometry.
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