Kapil Paranjape (IMSc)

Version Control

Kapil Hari Paranjape
The Institute of Mathematical Sciences

14th March 2008

Version Control



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does
one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

Kapil Paranjape (IMSc) Version Control 14th March 2008 2/1



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does

one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

1. The first step is to organise things into folders.

Kapil Paranjape (IMSc) Version Control 14th March 2008

2/1



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does

one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

1. The first step is to organise things into folders.

2. The second step is to create different files to do different things.

Kapil Paranjape (IMSc) Version Control 14th March 2008

2/1



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does

one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

1. The first step is to organise things into folders.
2. The second step is to create different files to do different things.
3. The third step is to test the result of the work done.

Kapil Paranjape (IMSc) Version Control 14th March 2008

2/1



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does

one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

1. The first step is to organise things into folders.

2. The second step is to create different files to do different things.
3. The third step is to test the result of the work done.
4

. The fourth step is to properly save and export/send the result.

Kapil Paranjape (IMSc) Version Control 14th March 2008

2/1



Introduction

Pre-Version Control

“Version Control” is about organising programs and documents. How does
one organise one's documents and programs before one learns version
control but after one has learnt to use some basic commands.

1. The first step is to organise things into folders.
The second step is to create different files to do different things.
The third step is to test the result of the work done.

The fourth step is to properly save and export/send the result.

ok e

The final step is to clean-up the work so that anyone returning to
look at it can figure out how the material is organised.

We often skip or truncate some of these steps! We will not discuss those
cases (which deserve our pity rather than annoyance!) where even the
steps on this slide are not followed.

Kapil Paranjape (IMSc) Version Control 14th March 2008 2/1



Introduction

What is missing?

The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?
The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?
The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

2. We often have files which we are not sure whether to keep or not.

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?
The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

2. We often have files which we are not sure whether to keep or not.

3. The testing worked at the time it was done but we can't verify those
tests now.

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?
The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

2. We often have files which we are not sure whether to keep or not.

3. The testing worked at the time it was done but we can't verify those
tests now.

4. In cleaning up we delete (by mistake!) files which are important.

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?
The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:
1. There are a large number of different folders.
2. We often have files which we are not sure whether to keep or not.
3. The testing worked at the time it was done but we can't verify those
tests now.
4. In cleaning up we delete (by mistake!) files which are important.
5. We do not cleanup and after a while the folder is full of files with
cryptic similar sounding names and we are not really sure which is the
one that got the correct results!

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?

The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

2. We often have files which we are not sure whether to keep or not.

3. The testing worked at the time it was done but we can't verify those
tests now.

4. In cleaning up we delete (by mistake!) files which are important.

5. We do not cleanup and after a while the folder is full of files with
cryptic similar sounding names and we are not really sure which is the
one that got the correct results!

6. In an effort to keep all the relevant documentation in the file we keep
all kinds of comments in the file which are not for the “public
version”.

Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



Introduction

What is missing?

The above approach is more than adequate for a large number of use
cases. However, as one begins to collect a large body of work we discover
some gaps:

1. There are a large number of different folders.

2. We often have files which we are not sure whether to keep or not.

3. The testing worked at the time it was done but we can't verify those
tests now.

4. In cleaning up we delete (by mistake!) files which are important.

5. We do not cleanup and after a while the folder is full of files with
cryptic similar sounding names and we are not really sure which is the
one that got the correct results!

6. In an effort to keep all the relevant documentation in the file we keep
all kinds of comments in the file which are not for the “public
version”.

7. It turns out the the work needs to be continued and developed further.

...and so on!
Kapil Paranjape (IMSc) Version Control 14th March 2008 3/1



What is the ideal?

In an ideal setup, after we have finished the work we should have a folder
containing files (and possibly sub-folders).

Kapil Paranjape (IMSc) Version Control 14th March 2008 4/1



What is the ideal?

In an ideal setup, after we have finished the work we should have a folder
containing files (and possibly sub-folders).

1. Each file/sub-folder has a recognisable name, or we have a README
file which documents what each of these is about.

Kapil Paranjape (IMSc) Version Control 14th March 2008 4/1



What is the ideal?

In an ideal setup, after we have finished the work we should have a folder
containing files (and possibly sub-folders).

1. Each file/sub-folder has a recognisable name, or we have a README
file which documents what each of these is about.

2. Each file/sub-folder is actually necessary for generating the program
or document in final form. The files that can be automatically
generated are handled by a makefile or following instructions given
in INSTALL.

Kapil Paranjape (IMSc) Version Control 14th March 2008 4/1



What is the ideal?

In an ideal setup, after we have finished the work we should have a folder
containing files (and possibly sub-folders).

1. Each file/sub-folder has a recognisable name, or we have a README
file which documents what each of these is about.

2. Each file/sub-folder is actually necessary for generating the program
or document in final form. The files that can be automatically
generated are handled by a makefile or following instructions given
in INSTALL.

3. We have clear history of how the files have been changed and why.

Kapil Paranjape (IMSc) Version Control 14th March 2008 4/1



What is the ideal?

In an ideal setup, after we have finished the work we should have a folder
containing files (and possibly sub-folders).

1. Each file/sub-folder has a recognisable name, or we have a README
file which documents what each of these is about.

2. Each file/sub-folder is actually necessary for generating the program
or document in final form. The files that can be automatically
generated are handled by a makefile or following instructions given
in INSTALL.

3. We have clear history of how the files have been changed and why.
4. Older “tricks" hidden in earlier versions of files can be recovered.

...and so on!

Kapil Paranjape (IMSc) Version Control 14th March 2008 4/1



