Varieties defined over Number Fields

Kapil Hari Paranjape

The Institute of Mathematical Sciences
Chennai
India-Brazil Mathematics Symposium, 28th July 2008

Hilbert on Algebraic Geometry

David Hilbert gave us the motto for Algebraic Geometry

Hilbert on Algebraic Geometry

David Hilbert gave us the motto for Algebraic Geometry
Arithmetical symbols are written diagrams
and

Geometric figures are graphic formulae

Hilbert on Algebraic Geometry

David Hilbert gave us the motto for Algebraic Geometry
Arithmetical symbols are written diagrams
and

Geometric figures are graphic formulae
Since I like geometry, this talk will focus on finding graphical representations of algebraic equations!

Algebraic Varieties

An algebraic variety is given by a system of homogeneous

Algebraic Varieties

An algebraic variety is given by a system of homogeneous polynomial

Algebraic Varieties

An algebraic variety is given by a system of homogeneous polynomial equations and in-equations

$$
\begin{aligned}
F_{1}\left(X_{0}, \ldots, X_{p}\right) & =0 \\
\vdots & \\
F_{q}\left(X_{0}, \ldots, X_{p}\right) & =0 \\
G_{1}\left(X_{0}, \ldots, X_{p}\right) & \neq 0 \\
\vdots & \\
G_{s}\left(X_{0}, \ldots, X_{p}\right) & \neq 0
\end{aligned}
$$

Algebraic Varieties

An algebraic variety is given by a system of homogeneous polynomial equations and in-equations

$$
\begin{aligned}
F_{1}\left(X_{0}, \ldots, X_{p}\right) & =0 \\
\vdots & \\
F_{q}\left(X_{0}, \ldots, X_{p}\right) & =0 \\
G_{1}\left(X_{0}, \ldots, X_{p}\right) & \neq 0 \\
\vdots & \\
G_{s}\left(X_{0}, \ldots, X_{p}\right) & \neq 0
\end{aligned}
$$

The variety defined is the locus of simultaneous solutions of this system in projective space \mathbb{P}^{n}.

Field of definition

We say that an algebraic variety is defined over a field F

Field of definition

We say that an algebraic variety is defined over a field F, when the coefficents of the polynomials are in F.
Our fundamental theme is:

Field of definition

We say that an algebraic variety is defined over a field F, when the coefficents of the polynomials are in F.
Our fundamental theme is:
The varieties defined over number fields have special geometric properties

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety.

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.
- Given a zero-cycle of the form $\sum_{i}\left(P_{i}-Q_{i}\right)$ and a 1-form ω on the variety, the expression $\sum_{i} \int_{P_{i}}^{Q_{i}} \omega$ is well-defined upto periods. We say that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
- Bloch conjectured that if the variety in question is a smooth projective surface

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.
- Given a zero-cycle of the form $\sum_{i}\left(P_{i}-Q_{i}\right)$ and a 1-form ω on the variety, the expression $\sum_{i} \int_{P_{i}}^{Q_{i}} \omega$ is well-defined upto periods. We say that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
- Bloch conjectured that if the variety in question is a smooth projective surface defined over a number field

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.
- Given a zero-cycle of the form $\sum_{i}\left(P_{i}-Q_{i}\right)$ and a 1-form ω on the variety, the expression $\sum_{i} \int_{P_{i}}^{Q_{i}} \omega$ is well-defined upto periods. We say that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
- Bloch conjectured that if the variety in question is a smooth projective surface defined over a number field, then a zero-cycle is rationally trivial if and only if it is Abel-Jacobi trivial.

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.
- Given a zero-cycle of the form $\sum_{i}\left(P_{i}-Q_{i}\right)$ and a 1-form ω on the variety, the expression $\sum_{i} \int_{P_{i}}^{Q_{i}} \omega$ is well-defined upto periods. We say that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
- Bloch conjectured that if the variety in question is a smooth projective surface defined over a number field, then a zero-cycle is rationally trivial if and only if it is Abel-Jacobi trivial.
- One can show that if the field has just one transcendental element

Bloch's Conjecture

- We define a zero-cycle on a smooth variety to be a finite linear combination $\sum n_{i} P_{i}$ where P_{i} are points on the variety and n_{i} are integers.
- One way to obtain such a zero-cycle is as the collection of zeroes and poles of a meromorphic function f on a curve C on the variety. We denote this by $\operatorname{div}_{C}(f)$.
- A zero-cycle is said to be rationally trivial if it is a finite sum of the form $\sum_{i} \operatorname{div}_{C_{i}}\left(f_{i}\right)$.
- Given a zero-cycle of the form $\sum_{i}\left(P_{i}-Q_{i}\right)$ and a 1-form ω on the variety, the expression $\sum_{i} \int_{P_{i}}^{Q_{i}} \omega$ is well-defined upto periods. We say that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
- Bloch conjectured that if the variety in question is a smooth projective surface defined over a number field, then a zero-cycle is rationally trivial if and only if it is Abel-Jacobi trivial.
- One can show that if the field has just one transcendental element, then there are zero-cycles such that no multiple is rationally trivial.

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points.

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points. We can think of this as the Riemann sphere with three punctures.

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points. We can think of this as the Riemann sphere with three punctures.

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points. We can think of this as the Riemann sphere with three punctures.

Since the order of branching is finite, we can relate each such curve to the triangle group $T_{a, b, c}$

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points. We can think of this as the Riemann sphere with three punctures.

Since the order of branching is finite, we can relate each such curve to the triangle group $T_{a, b, c}$

Group generated by three elements a, b, c
Normal subgroup generated by three relations $a^{p}=b^{q}=c^{r}=1$

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a cover of the projective line branched over at most three points. We can think of this as the Riemann sphere with three punctures.

Since the order of branching is finite, we can relate each such curve to the triangle group $T_{a, b, c}$

Group generated by three elements a, b, c
Normal subgroup generated by three relations $a^{p}=b^{q}=c^{r}=1$
This gives us a (as yet mysterious) relation between subgroups of finite index in this group and certain curves defined over number fields.

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

$$
\begin{array}{rlll}
z_{0} & \mapsto & 0 \\
z_{1} & \mapsto & 1 \\
z_{\infty} & \mapsto & \infty
\end{array}
$$

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

$$
\begin{array}{rll}
z_{0} & \mapsto & 0 \\
z_{1} & \mapsto & 1 \\
z_{\infty} & \mapsto & \infty
\end{array}
$$

In other words, any deformation of a triple of points in the Riemann sphere

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

$$
\begin{array}{rll}
z_{0} & \mapsto & 0 \\
z_{1} & \mapsto & 1 \\
z_{\infty} & \mapsto & \infty
\end{array}
$$

In other words, any deformation of a triple of points in the Riemann sphere, is equivalent to it under an automorphism of the Riemann sphere.

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

$$
\begin{array}{rlll}
z_{0} & \mapsto & 0 \\
z_{1} & \mapsto & 1 \\
z_{\infty} & \mapsto & \infty
\end{array}
$$

In other words, any deformation of a triple of points in the Riemann sphere, is equivalent to it under an automorphism of the Riemann sphere. On the other hand...

Möbius transformations

Given z_{0}, z_{1} and z_{∞} the transformation

$$
z \mapsto \frac{z-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z-z_{\infty}}
$$

has the result

$$
\begin{array}{rll}
z_{0} & \mapsto & 0 \\
z_{1} & \mapsto & 1 \\
z_{\infty} & \mapsto & \infty
\end{array}
$$

In other words, any deformation of a triple of points in the Riemann sphere, is equivalent to it under an automorphism of the Riemann sphere. On the other hand...
The cross-ratio of four points

$$
\lambda=\frac{z_{\lambda}-z_{0}}{z_{1}-z_{0}} \times \frac{z_{1}-z_{\infty}}{z_{\lambda}-z_{\infty}}
$$

is unchanged under Möbius transformations.

Re-statement of Belyi's Theorem

Theorem (Belyi's Theorem)

A curve is defined over a number field
if and only if
it is a covering of the projective line which is unramified outside a rigid configuration of points.

Equi-singular deformations

Deformations of algebraic varieties can change the topology.

Equi-singular deformations

Deformations of algebraic varieties can change the topology. For example, the "alpha curve" can be deformed into a smooth curve and vice versa.

Equi-singular deformations

Deformations of algebraic varieties can change the topology. For example, the "alpha curve" can be deformed into a smooth curve and vice versa.

We want to restrict to deformations that do not change the topology.

Equi-singular deformations

Deformations of algebraic varieties can change the topology. For example, the "alpha curve" can be deformed into a smooth curve and vice versa.

We want to restrict to deformations that do not change the topology. One way to achieve this is to restrict to equi-singular deformations.

Geometrically rigid figures

A sub-variety of the projective n-space \mathbb{P}^{n} is said to be
geometrically rigid

Geometrically rigid figures

A sub-variety of the projective n-space \mathbb{P}^{n} is said to be
geometrically rigid
if any equi-singular deformation of it is equivalent to it under an automorphism of \mathbb{P}^{n}.

Geometrically rigid figures

A sub-variety of the projective n-space \mathbb{P}^{n} is said to be
geometrically rigid
if any equi-singular deformation of it is equivalent to it under an automorphism of \mathbb{P}^{n}. Question: What are all geometrically rigid curves
(configurations) in the projective plane?

Characterisation of Geometric Rigidity

Theorem (Main Theorem)

Characterisation of Geometric Rigidity

Theorem (Main Theorem)

A projective plane curve it is defined over a number field.

```
if and only if
```

the curve is a component of a configuration which is geometrically rigid.

Characterisation of Geometric Rigidity

Theorem (Main Theorem)

A projective plane curve it is defined over a number field.
if and only if
the curve is a component of a configuration which is geometrically rigid.
Theorem (Main Corollary)

Characterisation of Geometric Rigidity

Theorem (Main Theorem)

A projective plane curve it is defined over a number field.
if and only if
the curve is a component of a configuration which is geometrically rigid.

Theorem (Main Corollary)

A projective surface is defined over a number field
if and only if
it is the covering of the plane which is unramified outside a geometrically rigid configuration.

Drawings of equations-1

The configuration of four lines in the plane is geometrically rigid.

Drawings of equations-1

The configuration of four lines in the plane is geometrically rigid.

We can take take the equation of this configuration to be $X Y Z(X+Y-Z)=0$.

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration.

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration. We can repeat this ...

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration. We can repeat this ...

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration. We can repeat this ...

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration. We can repeat this ...

This gives a configuration which contains the line $2 X+Y=Z$ (in red).

Drawings of equations-2

Adding a line which passes through the points of intersection gives another rigid configuration. We can repeat this ...

This gives a configuration which contains the line $2 X+Y=Z$ (in red). We can similarly add every line defined over rationals.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.
- We can obtain all points with rational co-ordinates as intersection points of a rigid configuration.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.
- We can obtain all points with rational co-ordinates as intersection points of a rigid configuration.
- A curve of the form $y=f(x)$ where f has rational coefficients is uniquely determined by the rational points on it.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.
- We can obtain all points with rational co-ordinates as intersection points of a rigid configuration.
- A curve of the form $y=f(x)$ where f has rational coefficients is uniquely determined by the rational points on it.
- We can obtain all points with co-ordinates in the field of algebraic number as intersection points of a rigid configuration.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.
- We can obtain all points with rational co-ordinates as intersection points of a rigid configuration.
- A curve of the form $y=f(x)$ where f has rational coefficients is uniquely determined by the rational points on it.
- We can obtain all points with co-ordinates in the field of algebraic number as intersection points of a rigid configuration.
- A curve defined over a number field is uniquely determined by the points on it with co-ordinates in the field of algebraic numbers.

Idea of the proof

- A line is uniquely determined by a pair of points lying on it.
- We can obtain all lines with rational equations as parts of a rigid configuration.
- We can obtain all points with rational co-ordinates as intersection points of a rigid configuration.
- A curve of the form $y=f(x)$ where f has rational coefficients is uniquely determined by the rational points on it.
- We can obtain all points with co-ordinates in the field of algebraic number as intersection points of a rigid configuration.
- A curve defined over a number field is uniquely determined by the points on it with co-ordinates in the field of algebraic numbers.
- Hence we can obtain a rigid configuration which contains such a curve.

