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Introduction

Hilbert on Algebraic Geometry

David Hilbert gave us the motto for Algebraic Geometry

Arithmetical symbols are written diagrams
and

Geometric figures are graphic formulae

Since I like geometry, this talk will focus on finding graphical
representations of algebraic equations!
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Introduction

Algebraic Varieties

An algebraic variety is given by a system of homogeneous

polynomial
equations and in-equations

F1(X0, . . . ,Xp) = 0

...

Fq(X0, . . . ,Xp) = 0

G1(X0, . . . ,Xp) 6= 0

...

Gs(X0, . . . ,Xp) 6= 0

The variety defined is the locus of simultaneous solutions of this system in
projective space Pn.
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Introduction

Field of definition

We say that an algebraic variety is defined over a field F

, when the
coefficents of the polynomials are in F .
Our fundamental theme is:

The varieties defined over number fields have special geometric
properties
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Introduction

Bloch’s Conjecture
I We define a zero-cycle on a smooth variety to be a finite linear

combination
∑

niPi

where Pi are points on the variety and ni are integers.
I One way to obtain such a zero-cycle is as the collection of zeroes and

poles of a meromorphic function f on a curve C on the variety. We
denote this by divC (f ).

I A zero-cycle is said to be rationally trivial if it is a finite sum of the
form

∑
i divCi

(fi ).
I Given a zero-cycle of the form

∑
i (Pi − Qi ) and a 1-form ω on the

variety, the expression
∑

i

∫ Qi

Pi
ω is well-defined upto periods. We say

that a zero-cycle is Abel-Jacobi trivial if this is zero for all ω.
I Bloch conjectured that if the variety in question is a smooth

projective surface defined over a number field, then a zero-cycle is
rationally trivial if and only if it is Abel-Jacobi trivial.

I One can show that if the field has just one transcendental element,
then there are zero-cycles such that no multiple is rationally trivial.
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Introduction

Theorem of Belyi

Any smooth projective curve which is defined over a number field is a
cover of the projective line branched over at most three points.

We can think of this as the Riemann sphere with three punctures.

Since the order of branching is finite, we can relate each such curve to the
triangle group Ta,b,c

Group generated by three elements a, b, c

Normal subgroup generated by three relations ap = bq = c r = 1

This gives us a (as yet mysterious) relation between subgroups of finite
index in this group and certain curves defined over number fields.
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Introduction

Möbius transformations
Given z0, z1 and z∞ the transformation

z 7→ z − z0

z1 − z0
× z1 − z∞

z − z∞
has the result

z0 7→ 0

z1 7→ 1

z∞ 7→ ∞

In other words, any deformation of a triple of points in the Riemann
sphere, is equivalent to it under an automorphism of the Riemann sphere.
On the other hand . . .
The cross-ratio of four points

λ =
zλ − z0

z1 − z0
× z1 − z∞

zλ − z∞
is unchanged under Möbius transformations.
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Introduction

Re-statement of Belyi’s Theorem

Theorem (Belyi’s Theorem)

A curve is defined over a number field

if and only if

it is a covering of the projective line which is unramified outside a rigid
configuration of points.
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Introduction

Equi-singular deformations

Deformations of algebraic varieties can change the topology.

For example,
the “alpha curve” can be deformed into a smooth curve and vice versa.

We want to restrict to deformations that do not change the topology.
One way to achieve this is to restrict to equi-singular deformations.
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Introduction

Geometrically rigid figures

A sub-variety of the projective n-space Pn is said to be

geometrically rigid

if any equi-singular deformation of it is equivalent to it under an
automorphism of Pn. Question: What are all geometrically rigid curves

(configurations) in the projective plane?
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Introduction

Characterisation of Geometric Rigidity

Theorem (Main Theorem)

A projective plane curve it is defined over a number field.

if and only if

the curve is a component of a configuration which is geometrically rigid.

Theorem (Main Corollary)

A projective surface is defined over a number field

if and only if

it is the covering of the plane which is unramified outside a geometrically
rigid configuration.
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Introduction

Drawings of equations-1

The configuration of four lines in the plane is geometrically rigid.

We can take take the equation of this configuration to be
XYZ (X + Y − Z ) = 0.
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Introduction

Drawings of equations-2

Adding a line which passes through the points of intersection gives another
rigid configuration.
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Drawings of equations-2

Adding a line which passes through the points of intersection gives another
rigid configuration. We can repeat this . . .

This gives a configuration which contains the line 2X + Y = Z (in red).
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Introduction

Drawings of equations-2

Adding a line which passes through the points of intersection gives another
rigid configuration. We can repeat this . . .

This gives a configuration which contains the line 2X + Y = Z (in red).
We can similarly add every line defined over rationals.
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Introduction

Idea of the proof

I A line is uniquely determined by a pair of points lying on it.

I We can obtain all lines with rational equations as parts of a rigid
configuration.

I We can obtain all points with rational co-ordinates as intersection
points of a rigid configuration.

I A curve of the form y = f (x) where f has rational coefficients is
uniquely determined by the rational points on it.

I We can obtain all points with co-ordinates in the field of algebraic
number as intersection points of a rigid configuration.

I A curve defined over a number field is uniquely determined by the
points on it with co-ordinates in the field of algebraic numbers.

I Hence we can obtain a rigid configuration which contains such a
curve.
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