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I have frequently used the above question to gauge the solidity of the mathemat-
ical training of another person. The incorrect responses vary between:

(1) An unhesitating “Yes”.
(2) An unhesitating “No” with no counter-example forthcoming.
(3) A “Yes” after some thought.
(4) “Yes, over the field of complex numbers”.

Linear Algebra forms the heart of “modern” mathematics. It is thus disappointing
to see the number of students confused about such an important issue. This note
is an attempt to show the ramifications of this question and provide a detailed
answer.

To begin with a matrix A is said to be “diagonalisable” if it is a square matrix
and there is an invertible matrix B such that B−1AB is a diagonal matrix. So we
need restrict ourselves only to square matrices for the purposes of our discussion.
Now it is clear that if {e1, . . . , en} is the standard basis for the vector space on
which A acts, then {Be1, . . . , Ben} is another basis, which has the property that
each of the basis vectors is an eigenvector; moreover, the diagonal entries of B−1AB
are just the eigenvalues of A. Thus an equivalent definition of diagonalisability is
be that there be a basis consisting of eigenvectors.

If A is a symmetric matrix then one can show that there is an orthogonal basis of
eigenvectors and thus we obtain the diagonalisability of symmetric matrices. One
can argue similarly for some other classes of matrices. This is perhaps what people
who give the third answer are thinking of. However, there is an important class of
matrices of which none except the zero matrix is diagonalisable (see below).

Now it is clear that a matrix like
(

0 1
−1 0

)
cannot have eigenvalues over the field

of real numbers; hence it isn’t diagonalisable over the real numbers. However, it is
diagonalisable over the field of complex numbers with eigenvectors e1 ±

√
−1 · e2.

More generally, one could argue as follows. From the second definition and the
usual definition of eigenvectors we know that we should be looking at the roots of
the Characteristic Polynomial PA(t) = det(A − tI). Now if we are working over
the field of complex numbers we have all roots of PA(t). Thus we have eigenvectors
corresponding to every eigenvalue. This is perhaps the reasoning of people who
give the fourth answer. However, the problem is that if an eigenvalue occurs with
multiplicity greater than one it is not clear that we can find two or more (linearly
independent) eigenvectors.

Of course the correct answer to the main question is “No” because of the phenom-

enon of nilpotent matrices. A matrix such as
(

0 1
0 0

)
has 0 as its only eigenvalue

but it is not the zero matrix and thus it cannot be diagonalisable. It is clear that
if N is nilpotent matrix (i. e. Nk = 0 for some k) then it is diagonalisable if and
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only N = 0. In fact, the role of nilpotent matrices is made more precise by the
“Jordan decomposition theorem” which says that any matrix A over the real num-
bers (or more generally over a perfect field) can be written as A = S + N where S
and N commute, N is nilpotent and S is diagonalisable over the complex numbers
(respectively over an algebraic extension of the ground field).

Now we can approach the question from a different viewpoint and ask for con-
ditions which ensure that the nilpotent matrix N is zero. One way to do this is
to ensure that PA(t) has distinct roots. In this case we clearly have a basis of
eigenvectors. Let f(t) = tn + c1t

n−1 + · · · + cn be any polynomial. There is a
(universal) polynomial Dn(C1, . . . , Cn) called the discriminant with the property
that Dn(c1, . . . , cn) = 0 if and only if f(t) has multiple roots (e. g. for n = 2 we
have D2 = C2

1 − 4C2). Now
the coefficients of the characteristic polynomial of a matrix A are
polynomials in the matrix entries of A.

Thus, treating the entries of the matrix as variables we get a (universal) polynomial
∆n in the matrix entries of A with the property that the characteristic polynomial
of A has multiple roots if and only if ∆n vanishes at A. It is not difficult to show
that ∆n is not the identically zero polynomial; moreover, the zero set of a non-zero
polynomial is always a “thin set” in the sense of measure theory. In other words,
if we bound the matrix entries of A and choose them randomly (but uniformly)
within these bounds then with probability 1 we will find a diagonalisable matrix.
Thus my own answer to the question posed above is two-fold:

(1) Every matrix is not diagonalisable. Take for example non-zero nilpotent
matrices. The Jordan decomposition tells us how close a given matrix can
come to diagonalisability.

(2) If we choose our matrix “randomly” (in a uniform distribution) from within
a bounded region, then it will turn out to be diagonalisable over the complex
numbers with probability 1 (in other words “always”).


