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Introduction

Let us first recall a standard restatement:

Fermat’s Last Theorem: There are no solutions to the following
problem with (X, Y, Z) integers

Xp + Y p + Zp = 0

XY Z 6= 0

p ≥ 3 and a prime

The approach to the proof of Fermat’s Last Theorem that is followed
by A. Wiles in his recent attempt can be thought of as a particular case
of the following tactic.

Suppose (X,Y, Z) is a counter-example to Fermat’s Last
Theorem.
(1) To such a counter-example we attach a representa-

tion

ρ(X,Y,Z) : Gal(Q/Q) → GLn(Fp)

Moreover, we have good ramification properties for
this representation. For example,

(a) the representation is unramified outside p,
(b) the representation has “good” ramification prop-

erties at p.
(2) The next step is to use our knowledge of Algebraic

Number Theory to prove that such representations
are impossible.

The proof of Kummer for the case of regular primes can also be
reviewed in this light. First of all, Kummer’s proof associates to every
counter-example (X, Y, Z), a representation

ρ : Gal(K/K) → Fp

where K is cyclotomic field of p-th roots of unity. Next, he gives
a way of finding out which primes p are such that we have such a
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representation. As he showed, there are indeed such primes and thus
his proof works only for “regular” primes.

In section 1 we recall some computations in the cyclotomic field of
p-th roots of unity. In section 2 we show how a counter-example to
Fermat’s Last Theorem (if it exists) can be used to construct a cyclic
extension of order p of the cyclotomic field which is unramified every-
where. We review the Class number formula in section 3. Finally, in
Section 4 we use this formula to check when such unramified extensions
do indeed exist.

Most of the material in this note can be found in more detail (though
in a more classical presentation) in the book of H. M. Edwards [1].
This re-examination of Kummer’s proof was inspired by some remarks
made by V. Kumar Murty during his lecture on the work of Wiles at
the TIFR. I would like to thank A. Raghuram for his careful reading
of the manuscript and numerous suggestions.

We fix a prime p ≥ 5 throughout the discussion.

1. Arithmetic of prime cyclotomic fields

Let R denote the subring of complex numbers generated by ω =
exp(2πι/p); let K denote the quotient field of R, which is called the
cyclotomic field of p-th roots of unity. We review some well-known
facts about the ring R and the field K—mostly without proof.

The ring R is isomorphic to Z[X]/(Φp(X)), where

Φp(X) = Xp−1 + · · ·+ X + 1 = (Xp − 1)/(X − 1)

is an irreducible polynomial (a simple application of the Eisenstein cri-
terion). The field K is a Galois extension of Q with Galois group F∗

p ;
this is a cyclic group of order (p−1). We use γ for a fixed choice of gen-
erator. We use α to denote γ(p−1)/2(α) since γ(p−1)/2 is the restriction
of complex conjugation to R.

The ring R is a Dedekind domain, i. e. unique factorization holds for
ideals. The prime ideals in this ring are described as follows:

(1) If q ∈ Z is a prime number different from p. Then let f be the
order of q in F∗

p and let g = (p− 1)/f . Then there are g prime

ideals Q1, . . . , Qg in R such that their norms are qf .
(2) The element λ = 1− ω is prime in R and λp−1 = (unit) · p.

A closed form expression for the generators of the group U of units
of R is not known. However, the numbers

uj = γj(λ)/λ = 1 + ω + · · ·+ ωj−1
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are in R and are units there. The subgroup Ucycl of the group U of
units of R generated by the uj for j = 2, . . . , (p− 1) is called the group
of cyclotomic units. If u is a unit in R, then u/u is a root of unity in R.
The roots of unity in R are all of the form ±ωj for some j = 0, . . . , p−1.
An element of R is a p-th power only if it is congruent to an integer
modulo pR. It follows that u/u = ωj for some j (i. e. there is no minus
sign).

Let L denote the subfield of K fixed by complex conjugation; let S =
L∩R. Then L is a Galois extension of Q with Galois group F∗

p/{±1}.
No complex embeddings of K have image within real numbers while
all complex embeddings of L have image within real numbers; in other
words, K is purely imaginary and L is totally real. Again, S is a
Dedekind domain and its ideals are described as follows:

(1) If q ∈ Z is a prime number different from p. Then let f ′ be the
order of q in F∗

p/{±1} and let g′ = (p− 1)/2f ′. Then there are

g′ prime ideals Q1, . . . , Qg in R such that their norms are qf ′
.

(2) The element µ = 1 − (ω + ω−1) is prime in R and µ(p−1)/2 =
(unit) · p.

If u is a unit in R, then we have seen that u/u = ωr for some integer r.
But then r ≡ 2s (mod p) for some integer s; hence u1 = ω−su is in S.
Hence, any unit in R is the product of a root of unity and a unit in S.

If I is any ideal in S then IR is principal in R if and only if I is
principal in S. Hence the homomorphism from the class group of S to
that of R is injective. In particular the order h of the class group of R
is divisible by the order h+ of the class group of S.

If we have a unit u in R such that it is congruent to an integer
modulo pR and if u is itself not a p-th power, then the field extension
of K obtained by adjoining a p-th root of u is a cyclic extension of K
of order p which is unramified everywhere.

Finally we have a fact from Class Field theory. If there is an ideal
I in R such that Ip is principal and I is not principal, then there is a
cyclic entension of K of order p which is unramified everywhere. This
follows from the identification of the class group of R with the Galois
group of the maximal unramfied abelian extension of K. Now we use
the fact that if an abelian group has an element of order p, then it has
a non-trivial character of order p.

2. Construction of cyclic cover

The aim is to show that if we have a counter-example to Fermat’s
Last Theorem, then there is a cyclic extension of order p of K which
is unramified everywhere. As is usual we can assume that the given



4 K. H. PARANJAPE

counter-example (X, Y, Z) has the property that these are mutually
co-prime integers.

Case 1: p 6 |XY Z. First of all we see easily that (X, Y, Z) are not all
congruent modulo p. If not, we have

3X ≡ X + Y + Z ≡ Xp + Y p + Zp ≡ 0 (mod p)

Now, we are assuming that p ≥ 5 and so we obtain X ≡ 0 (mod p);
this contradicts our hypothesis for Case 1.

Secondly, we see that (X+ωjY ) are mutually co-prime in R as j runs
over 0, . . . , p− 1. If not, then we have a prime ideal P in R containing
(X + ωjY,X + ωkY ). Then this ideal P contains (1 − ωj−k)Y . Now
from the factorisation

(−Z)p = Xp + Y p = (X + Y )(X + ωY ) · · · (X + ωp−1Y )

we see that P contains Z. Hence, by the assumption that (X, Y, Z) are
mutually co-prime we see that P contains (1−ωl) for some 0 ≤ l ≤ p−1.
By the description of prime ideals in R as in section 1 we see that
P = λR. But then Z is a multiple of p which contradicts our hypothesis
in Case 1.

By the above paragraph and unique factorization of ideals we see
that we have ideals Ij of R such that Ip

j = (X + ωjY )R. Assume I1 is
principal; then we have an equation

(X + ωY ) = u · αp

for some α ∈ R and u a unit in R. Applying complex conjugation we
obtain

(X + ω−1Y ) = u · αp

By the results mentioned in section 1 we have ωru = u for some r.
Moreover, αp is congruent to an integer modulo pR and hence is con-
gruent to its own complex conjugate. Thus we obtain an equation

X + ωY − ωrX − ωr−1Y ≡ 0 (mod p)

Now it follows from the description of R given in Section 1 that it is a
free abelian group with basis consisting of any (p− 1) elements of the
set {1, ω, . . . , ωp−1}. From this and the fact that X and Y are prime
to p it follows that r = 1 and X ≡ Y (mod p).

By similar reasoning interchanging the roles of Y and Z we can
conclude that there is an ideal J1 such that Jp

1 = (X +ωZ). Assuming
J1 is principal we see by an argument like the one above that X ≡ Z
(mod p). But as seen above the two congruences

X ≡ Y (mod p) and X ≡ Z (mod p)
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contradict the hypothesis of Case 1. Hence, either I1 or J1 must be
non-principal. But then by the principal result of Class Field theory
as mentioned in section 1 we have required cyclic extension of K.

Case 2: p|XY Z. We may assume that Z = pkZ0 and (p, X, Y, Z0) are
mutually co-prime. By writing p = (unit) · λ(p−1) in the ring R, we
obtain an equation of the form

Up + V p + (unit)λmpW p = 0 with m > 0

where (U, V,W ) are in R so that (U, V,W, λ) are mutually co-prime.
Let (U, V,W ) be a collection of elements of R that satisfy such an
equation with m the least possible. Then λ divides one of the factors
(U + ωjV ). But then we have

(U + ωjV )− (U + ωkV ) = ωj(1− ωk−j)V = (unit) · λV

and thus, λ divides all the factors (U + ωjV ). Moreover, since V is co-
prime to p and thus λ as well, we see that (U + ωjV )/λ have distinct
residue classes modulo λR. But then, by the pigeon-hole principle there
is at least one 0 ≤ j ≤ (p − 1) such that (U + ωjV ) is divisible by λ2

in R. Replacing V by ωjV we may assume that (U +V ) is divisible by
λl for some l > 1. Hence we may write

U + V = λla0

U + ωkV = λak; for k > 0

where all the ak are elements of R that are co-prime to λ and with each
other (as in the previous case). This gives us the identity l + (p− 1) =
mp or equivalently l = (m− 1)p + 1. Since l ≥ 2 we have m ≥ 2.

Now by unique factorisation of ideals in R we see that there are ideals
Ij in R such that Ip

j = ajR. Assume that I0, I1 and Ip−1 are principal,
then we have the equations

U + V = λl · u · bp
0

U + ωV = λ · v · bp
1

U + ω−1V = λ · w · bp
−1

for some units u, v and w in R and some elements b0, b1 and b−1 in R.
Eliminating U and V from these equations we obtain

λl · u · bp
0 − λ · v · bp

1 = ω(λ · w · bp
−1 − λl · u · bp

0)

which becomes
bp
1 + v1 · bp

−1 + λl−1 · v2b
p
0 = 0

where v1 and v2 are units (we use here the fact that 1 + ω is a unit
in R). Modulo pR the last term on the left-hand side vanishes since
l ≥ p > (p − 1). Thus we see that v1 is congruent to a p-th power
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and thus an integer modulo pR. By section 1 we have a representation
of Galois as required, unless v1 is a p-th power. If v1 = vp

3, then
(U, V,W ) = (b1, v3b−1, b0) satisfy

Up + V p + (unit)λ(m−1)pW p = 0

which contradicts the minimality of m since we have seen that m ≥ 2.
Thus, either we have constructed a cyclic extension of the required type
or one of I0, I1, Ip−1 is non-principal. But then again by the principal
result of Class Field theory we have a cyclic extension as required.

3. Transcendental computation of the Class number

We first need to introduce the Dedekind zeta function for a number
field K, and its Euler product expansion

ζK(s) =
∑

I

1

N(I)s
=

∏
Q

1

(1− 1
N(Q)s )

where the sum runs over all ideals I of R and the product runs over
all prime ideals Q of R. The two expressions give us two ways of
computing lims→1(s−1)ζK(s). The left-hand side is expressed in terms
of “arithmetic” invariants and the right-hand side in terms of invariants
for the Galois group. The resulting identity gives a way for computing
the Class number h of K.

The left-hand limit can be computed to be

lim
s→1

(s− 1)
∑

I

1

N(I)s
= lim

r→∞

#{I | N(I) ≤ r}
r

The set {I | N(I) ≤ r} can be split according to ideal classes. We try
to compute for each ideal class C,

z(C) = lim
r→∞

#{I ∈ C | N(I) ≤ r}
r

.

Fixing an ideal I0 ∈ C, this latter set is bijective to the set {aR ⊂ I−1
0 |

N(a) ≤ r ·N(I0)
−1}. (Here N(a) denotes the modulus of the norm of

a.)
We have a natural embedding K ↪→ K ⊗QR. The image of J = I−1

0

is a lattice in K ⊗Q R. Let Λ denote the image of J − {0} in the
quotient S = (K ⊗QR)∗/U where U is the image of the group of units
in R under the above embedding. There is a natural homomorphism
N : S → R∗ which restricts to the modulus of the norm on the image
of K. We obtain a natural bijection between {aR ⊂ I−1

0 | N(a) ≤ r}
and {l ∈ Λ | N(l) ≤ r}. Let Λr denote the image of (1/r)J − {0} in
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S, then we have a natural bijection between {l ∈ Λ | N(l) ≤ rd} and
{l ∈ Λr | N(l) ≤ 1}, where d denotes the degree of K oover Q.

Let S≤1 denote locus of l ∈ S such that N(l) ≤ 1. Let µ denote the
Haar measure on K ⊗QR. This is invariant under the action of U and
thus gives a measure also denoted by µ on S. Since J is a lattice in
K ⊗Q R we have

lim
r→∞

#{l ∈ Λr | N(l) ≤ 1}
rd

=
µ(S≤1)

µ(K ⊗Q R/J)

Moreover, the denominator can be re-written

µ(K ⊗Q R/J) = N(J)µ(K ⊗Q R/R).

In particular, we see that the limit z(C) is independent of the class C.
Let (K ⊗Q R)∗1 denote the kernel of the norm map. This is a group
and thus we have a Haar measure ν on it. One shows that

µ(S≤1) = ν((K ⊗Q R)∗1/U)

Combining the above calculations one obtains

lim
s→1

(s− 1) · ζK(s) = h · ν((K ⊗Q R)∗1/U)

µ(K ⊗Q R/R)

This often called the “Class number formula” for K. Note that the
denominator can be computed in closed form in terms of the discrim-
inant D of the field K and the number of pairs of conjugate complex
embeddings r2 of K.

µ(K ⊗Q R/R) =
1

2r2
·
√
|D|

However, the numerator is in general more complicated since it involves
computing the group of units of K.

To expand the right-hand term we restrict our attention to abelian
extensions K of Q. The product term on the left can be first grouped
according to rational primes∏

Q

1

(1− 1
N(Q)s )

=
∏

q

∏
Q|q

1

(1− 1
N(Q)s )

Now for each rational prime q which is unramified in K we have∏
Q|q

1

(1− 1
N(Q)s )

=
∏
χ

1

(1− χ(q)
qs )

where χ runs over all characters of the Galois group and χ(q) =
χ(Frobq) is the value of χ on a Frobenius element associated with q.
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We define the Dirichlet L-series and their Euler product formulas as
follows

L(s, χ) =
∑

n

χ(n)

ns
=

∏
p

1

(1− χ(p)
ps )

where we set χ(p) = 0 when χ is ramified at p. We also define the
additional factor

F (s) =
∏

p ramified

1

(1− 1
pfp )gp

where the product runs over all ramified primes and fp denotes the
residue field extension over p and gp the number of distinct primes in
K lying over p. The product expansion of ζK(s) becomes

ζK(s) = F (s) ·
∏
χ

L(s, χ).

Thus the computation of the limit can be reduced to the correspond-
ing computation for the Dirichlet L-series. For the case of the unit
character we get by comparison with the zeta function

lim
s→1

(s− 1)F (s)L(s, 1) = 1.

So the right-hand limit gives

lim
s→1

(s− 1)ζK(s) =
∏
χ6=1

L(1, χ).

There is a positive integer m such that χ is determined on classes
modulo m and χ is zero on all primes p dividing it; m is called the
conductor of χ. We rewrite the L-function associated with χ as follows

L(s, χ) =
∑

x∈(Z/mZ)∗

χ(x) ·
∑

n≡x (mod m)

1

ns


The latter sum can be rewritten using the identity

m−1∑
i=0

ωxi =

{
0, if x 6≡ 0 (mod m)

m, if x ≡ 0 (mod m)

where ω is a primitive m-th root of unity. The second sum then becomes∑
n≡x (mod m)

1

ns
=

1

m

∞∑
n=1

1

ns

m−1∑
i=0

ω(x−n)i
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Thus we obtain

L(s, χ) =
1

m

m−1∑
i=0

 ∑
x∈(Z/mZ)∗

χ(x)ωix

 ·
∞∑

n=1

ω−in

ns

The expression

τi(χ) =
∑

x∈(Z/mZ)∗

χ(x)ωix

is called the Gaussian sum associated with the integer i and the char-
acter χ. If χ is not the unit character then τ0(χ) = 0. Moreover, if
i 6= 0 then we have the identity

∞∑
n=1

ω−in

n
= − log(1− ω−i)

Hence, we obtain the formula when χ is not the unit character

L(1, χ) = − 1

m

m−1∑
i=1

τi(χ) · log(1− ω−i)

4. Divisiblity of the Class number by p

Combining the results of sections 1 and 2 we have shown that any
counter-example to Fermat’s Last theorem for a prime p ≥ 5 leads to
a non-trivial representation

ρ : Gal(K/K) → Fp

which is unramified everywhere; here K denotes the subfield of complex
numbers generated by the p-th roots of unity. Kummer called primes
which admit such representations irregular. He showed that there are
indeed such primes (p = 37 is one such) and hence this particular
attempt to prove Fermat’s Last theorem fails. We now wish to show
how one goes about checking whether a prime is irregular.

We apply the results of Section 3 in the special case where K is the
prime cyclotomic field of section 1 and also to the totally real subfield
L.

First of all we use the divisibility of the class number h of R by the
class number h+ of S to write h = h+ · h− for some integer h−. Let
W denote the (finite cyclic) group of roots of unity in K. Then we
have U = W · U+, where U+ denotes the group of units in S and so
#(U/U+) = #(W/{±1}) = p. We have the natural inclusion L ⊗Q
R ↪→ K ⊗Q R from which we obtain the isomorphism

(K ⊗Q R)∗1/(L⊗Q R)∗1 = (C∗1/R∗
1)

(p−1)/2
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since (p− 1)/2 is the degree of L over Q. From this we deduce that

ν((K ⊗Q R)∗1/U) =
1

p
· ν(C∗1/R∗

1)
(p−1)/2 · ν((L⊗Q R)∗1/U+)

The formula for computing discriminants yields

µ(K ⊗Q R/R) = µ(L⊗Q R/S)2 · p1/2

since p is the norm of the relative discrimant. Thus the class number
formulas for K and L then give a formula for h−

h− · ν(C∗1/R∗
1)

(p−1)/2

p3/2 · µ(L⊗Q R/S)
=

∏
χ(−1)=−1

L(1, χ)

Hence h− can be computed explicitly and in closed form. In particular,
the divisibility of h− by p is an easily computable criterion.

The divisibility of h+ by p is more complicated. As remarked earlier,
the term ν((L⊗QR)∗1/U+) is difficult to compute. However, we have the
subgroup U+,cycl = U+∩Ucycl and one can compute ν((L⊗QR)∗1/U+,cycl).
In fact one shows that

ν((L⊗Q R)∗1/U+,cycl) = µ(L⊗Q R/S) ·
∏

χ even

L(1, χ)

where the product runs over all non-trivial characters χ such that
χ(−1) = 1. The class number formula for h+ becomes

h+ = [U+ : U+,cycl] = [U : Ucycl].

This is the first coincidence that makes Kummer’s calculations possible.
From the above identity we see that if p divides h+ then we have a

real unit u such that its p-th power is a cyclotomic unit but u is not
itself cyclotomic. Hence v = up is a cyclotomic unit which is congruent
to an integer modulo pS. If we find a w ∈ Ucycl such that v = wp then
one shows easily that u is itself a cyclotomic unit. Let Q denote the
quotient group (S/pS)∗/(Z/pZ)∗. We obtain a natural homomorphism

m : Ucycl ⊗ (Z/pZ) → Q

which is represented by a square matrix with entries from Fp. The
preceding remarks imply that p|h+ only if det(m) = 0. The second
coincidence that makes Kummer’s calculation work is that det(m) ≡
h− (mod p).

Thus we see that p|h if and only if p|h−. Hence we can easily check
which primes are regular.



KUMMER’S PROOF 11

References

[1] H. M. Edwards, Fermat’s last theorem, Graduate Texts in Mathematics, vol. 50,
Springer-Verlag, New York Berlin Heidelberg, 1977.

School of Mathematics, TIFR, Homi Bhabha Road, Bombay 400 005,
India


