Algebraic Cycles

K. H. Paranjape and V. Srinivas

Introduction

This article is based on a talk given by V. Srinivas at the MRI, Allahabad.
We give an account of the theory of algebraic cycles where the stress is not on
the spate of conjectures (Hodge, Tate, Grothendieck, Bloch-Beilinson, etc.)
that define the picture of this theory today, but rather on the key examples
that refined and delineated this picture. Some of the deepest aspects of the
theory of algebraic cycles are related to number theory. However, because of
our lack of expertise on this topic, and to limit the scope of the discussion,
we concentrate on the geometric aspects of the theory.

The model case of the theory of divisors on an algebraic curve (or compact
Riemann surface) is dealt with in Section 1. The attempt to generalise this
theory in higher dimensions is what led to much of the later work. In Section
2 we introduce the Chow ring with its relation to Grothendieck’s K-theory
via the Grothendieck Riemann-Roch theorem. The theory of divisors on
smooth projective varieties is the next best understood case and we describe
its features in Section 3. A much studied case is that of zero-cycles which we
discuss in Section 4. Various alternate equivalences were introduced on the
group of algebraic cycles; we study these in Section 5. We carry on in this
section with a survey of the examples that build up our picture of the relation
between these equivalences. In Section 6 we see the results of the attempt
to relate the Chow group to points on an Abelian variety. As mentioned
above we do not survey the conjectures in the theory of algebraic cycles. We
discuss some of these briefly in Section 7. More detailed accounts of these
can be found in [12] and an excellent survey by U. Jannsen [20].

General references for the theory of algebraic cycles are the survey article
[19], describing the status of the subject in the early 70’s, and the book
[4] giving subsequent developments and newer viewpoints. The material in
Section 1 can be found in most books on curves, for example [17]. The

1



book [14] is the most complete source for the construction of the Chow ring,
Chern classes, the Grothendieck—Riemann—Roch theorem and other material
in Section 2. The theory of divisors on surfaces is dealt with in detail in [25]
and a similar treatment can also be given in higher dimensions. References
for the remaining sections can be found within the text. Unfortunately no
books exist which cover the developments in the theory of algebraic cycles
after Bloch’s monograph [4] on the subject in 1980.

1 Model case of curves

The topic of algebraic cycles has its origin in the theory of divisors on an
algebraic curve, or compact Riemann surface. If X is a non-singular projec-
tive curve over an algebraically closed field k, a divisor on X is an element
of the free abelian group on the points of X; we denote this free abelian
group by Div (X). If f is a rational function on X, we can associate to it
its divisor div (f)x = Zo(f) — Zoo(f), where Zy(f) is the set of zeroes of
f, and Z(f) the set of poles of f, both counted with multiplicity. Such
a divisor is called a principal divisor; we denote by P(X) the subgroup of
Div (X)) consisting of principal divisors, and we define the (divisor) class
group C1(X) = Div (X)/P(X).

Let Pic (X)) denote the group of line bundles (i.e., invertible sheaves) on
X. To any meromorphic section of a line bundle L we can associate a divisor
in a manner analogous to that for meromorphic functions given above. The
divisor associated with a holomorphic section of a line bundle is said to be an
effective divisor; this is equivalent to the assertion that all the multiplicities
of points occuring in the divisor are non-negative. The ratio of any two
mermorphic sections of L is a global meromorphic function. Thus there is
a natural homomorphism Pic (X) — CI(X). This map is an isomorphism.
By abuse of notation we will denote the divisor class of a line bundle L by L
also.

There is a homomorphism deg : Cl (X) — Z called the degree homomor-
phism given by deg(} ", n;[P]) = >, ni. The Riemann-Roch theorem states
that if L is any line bundle on X,

dim, H(X, L) = deg(D) + 1 — g + dim H' (X, L)

=deg(D) +1— g+ dim, H°(X, Qﬁ(/k ® L)



Here g is the genus of X and Q7 Ik is the invertible sheaf of differential 1-forms.
As a consequence one easily obtains the identities g = dim;, H°(X, Q% ;)
and deg(QY ) = 2g — 2. Moreover, from the fact that H°(X, L) is zero if
deg(L) < 0 we obtain that

HY(X, L) = deg(D) + 1 — g if deg(D) > 2g — 1.

The collection of all effective divisors of a fixed degree d form the smooth
projective variety Sym ¢(X) (the d-th symmetric product of X with itself).
The kernel C1°(X) of deg : Cl(X) — Z is also naturally isomorphic to
(the group of k-rational points of) an Abelian variety, the Jacobian variety
Jac (X). Fixing a point py on the curve we have a natural morphism ¢, :
Sym¢(X) — Jac(X) sending an effective divisor D to the class of D — d -
po. The Abel-Jacobi theorem (which yields the above isomorphism between
C19(X) and Jac (X)) says that the fibre of ¢4 through a divisor D precisely
consists of all effective divisors in the same divisor class as D. Moreover,
from the Riemann-Roch theorem we see that ¢, is surjective for d > g¢.

2 The Grothendieck—Riemann—Roch theorem

Let X be a non-singular variety over k. An algebraic cycle of codimension
p is an element of the free Abelian group on irreducible subvarieties of X of
codimension p; the group of these cycles is denoted Z?(X). As in the case
of curves one can introduce the effective cycles ZP(X)=° which is the sub-
semigroup of ZP( X)) consisting of non-negative linear combinations. There is
a subgroup RP(X) C ZP(X), defined to be the subgroup generated by all the
cycles div (f)w where W ranges over irreducible subvarieties of codimension
p—1in X, and f € k(W)*. The quotient CH?(X) = ZP(X)/RP(X) is called
the Chow group of codimension p cycles on X modulo rational equivalence;
if n = dim X then we use the notation CH,(X) = CH"?(X). Forp =1
and X a smooth projective curve the Chow group CH!(X) is precisely the
class group Cl(X) introduced above.

The generalisation of Schubert calculus on the Grassmannians is the in-
tersection product

CHP(X) @z CH?(X) — CHP*(X)

making CH*(X) = ¢,CHP(X) into an associative, commutative, graded
ring, where CH®(X) = Z, and CH?(X) = 0 for p > dim X. The Chow ring
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is thus an algebraic analogue for the even cohomology ring &7 H?*(X,Z) in
topology. A refined version of this analogy is examined in Section 6. In any
case we note the following ‘cohomology-like’ properties.

1. X — @,CHP(X) is a contravariant functor from the category of smooth
varieties over k to graded rings.

2. If X is projective and n = dim X, there is a well defined degree homo-
morphism deg : CH™(X) — Z given by deg(>_,n;F;) = >, n;. This
allows one to define intersection numbers of cycles of complementary
dimension, in a purely algebraic way, which agree with those defined
via topology when k = C (see item 7 below).

3. If f: X — Y is a proper morphism of smooth varieties, there are
‘Gysin’ maps f, : CH?(X) — CHP™(Y) for all p, where d = dimY —
dim X; here if p + d < 0, we define f, to be 0; the induced map
®,CH?(X) — &,CH?(Y) is ¢,CH?(Y)-linear (‘projection formula’).

4. f*: CH*(X) = CH*(V) for any vector bundle f: V — X.

5. If V' is a vector bundle (i.e., locally free sheaf) of rank r, then there
are Chern classes ¢,(V) € CHP(X), such that

(a) co(V) =1,
(b) ¢,(V) =0 for p > r, and
(c) for any exact sequence

0—-VN—=V,—=V3—-0

we have c(V2) = c(V1)e(V3), where ¢(E;) = > ¢,(V;) are the total
Chern classes.

Moreover, we also have the following property.

6. If f:P(V) — X is the projective bundle associated to a vector bun-
dle of rank r, CH*(P(V)) is a CH*(X)-algebra generated by { =
c1(Op(vy(1)), the first Chern class of the tautological line bundle, which
is subject to the relation

= a(V)E 4t () (V) =0



7. If k = C, there are cycle class homomorphisms CH?(X) — H?(X,Z)
such that the intersection product corresponds to the cup product in
cohomology, and for a vector bundle E, the cycle class of ¢,(E) is the
topological p-th Chern class of F.

In analogy with the case of curves we have that ¢; : Pic (X) — CH!(X)
is an isomorphism. In fact more is true. If Ky(X) is the Grothendieck ring
of vector bundles on X, the Chern character (defined using Chern classes by
the same formula as in topology) gives a ring isomorphism

ch: Ko(X)®Q = CH*(X) ® Q.

Identifying the group Ko(X) with the Grothendieck group Go(X) of coherent
sheaves, we may extend the definitions of Chern classes and Chern charac-
ter to coherent sheaves; now the Grothendieck-Riemann-Roch theorem states
that for any proper morphism f : X — Y, and any coherent sheaf F on X,
we have

Fleh(F)d(X)) = ch(AF)td(Y),

where td(X) € CH*(X), td(Y) € CH*(Y) are the Todd classes of the
tangent sheaves of X and Y respectively; here fi : Go(X) — Go(Y) is
Ni(F) =D 50(—1)[R"f.F], and the Todd class of a coherent sheaf is a certain
polynomail in its Chern classes. If X is proper over k (e.g., X is projective)
of dimension n, and Y is a point, this gives a formula (the Grothendieck-
Hirzebruch-Riemann-Roch formula)

(X, F) = Z(—w dimy, H*(X, F) = deg (ch(F)td(X)), ,

where the subscript n means that we compute the degree of the component
in CH™(X). For further details, see [14], Chapter 15.

3 Divisors on varieties of higher dimension

For the special case of divisors (i.e., CH'(X)) much of the picture is un-
changed from that for curves. To begin with, as we saw above we have an
isomorphism Pic (X) = CH(X).

When X is projective one can define an equivalence relation on CH (X))
as follows. Let C' be any smooth curve and D C X x C be a divisor which

5



does not contain any fibre of X x C' — C'. For any pair of points p,q on C' the
divisor DNX x {p} — DN X x{q} can be considered as a divisor on X, which
is said to be algebraically equivalent to 0. The quotient of CH'(X) by this
equivalence relation is a finitely generated Abelian group—the Néron-Severi
group NS (X). This gives us a generalisation of the degree homomorphism
for curves, namely the quotient map ¢l : CH'(X) — NS (X).

Upto torsion this equivalence relation can also be defined using inter-
section theory. We define a divisor D to be numerically equivalent to zero
if the intersection number (D - C') = 0 for every curve C' contained in X.
Then one knows that some multiple of D is in fact algebraically equivalent
to 0. Conversely, if a divisor D is algebraically equivalent to 0 then it is also
numerically equivalent to 0. In case the ground field is C then we can also
identify algebraic equivalence with homological equivalence: i.e., a divisor is
algebraically equivalent to 0 precisely if it lies in the kernel of the cycle class
map CH'(X) — H?(X, Z).

In particular, deg(ch(L) - td(X)),, depends only on the class cl(L) of L in
NS (X). The Grothendieck-Hirzebruch-Riemann-Roch theorem then actually
gives a method for computing x (X, L) in terms of the class ¢l(L) in NS (X).
However, the exact formula dim;, H°(X, Ox (D)) = deg D+1—g, valid for di-
visors of large degree on a curve of genus g, has only a partial generalisation to
higher dimensions: if D is an ample divisor, then the Grothendieck-Riemann-
Roch theorem gives a formula for dim;, H%(X, Ox(mD)) for large m, since
HY(X,Ox(mD)) =0 for i > 0 (by Serre’s vanishing theorem), and so

dim H(X, Ox(mD)) = x(Ox(mD)) = deg(ch(L)td(X)), .

For effective divisors D on a surface, the general case was studied by Zariski[43],
and its solution is completed in [11], where a similar problem is posed for
suitable divisors on varieties of dimension > 3.

The collection of all effective divisors on X corresponding to a fixed class
¢ in NS (X) form a projective scheme Hilb.(X). Also, in analogy with the
case for curves, the kernel A'(X) of the morphism CH'(X) — NS (X) is also
naturally isomorphic to (the group of k-rational points of) an Abelian variety,
the Picard variety Pic?(X). Fixing one divisor C' in the class ¢ we obtain
a natural morphism Hilb.(X) — Pic%(X), the Abel-Jacobi morphism. The
fibres of this morphism precisely consist of effective divisors corresponding
to a fixed class in CH'(X). As in the case of curves, one can show that for
a “sufficiently large” multiple of an ample class ¢ the morphism Hilb,, . —
Pic%(X) is surjective.



4 Zero cycles on varieties of higher dimension

Another way of looking at divisors on curves is as zero dimensional cycles.
For a higher dimensional X we now examine CH(X). Let dim X = n. We
put CHy(X)o = ker(deg : CH"(X) — Z), the group of zero cycles of de-
gree 0 (modulo rational equivalence). This conicides with cycles numerically
equivalent to zero, and also with cycles algebraically equivalent to zero (as
defined in the next section).

There is a surjective regular homomorphism CH (X ), — Alb (X)(k),
where Alb (X)) is an Abelian variety, the Albanese variety of X. An alge-
braic construction of Alb (X)) is as follows. There is a universal line bundle
P on X x Pic?(X) called the Poincaré bundle. By duality this induces a
morphism X — Alb (X), where Alb (X) denotes the dual Abelian variety to
Pic%(X). Thus we obtain a morphism Sym<4(X) — Alb(X) by additivity.
As a complex torus,

Alb (X) =2 H*(X,C)/ (F'H*" (X, C) + image H*" (X, Z)) ,

where F™* is the Hodge filtration on cohomology.

Now it is not hard to show that for sufficiently large d, the morphism
Sym?(X) — Alb (X) is surjective. However, the fibres of this map are not
in general rational equivalence classes of effective zero cycles of degree d. It
is true that CH (X )o — Alb (X)(k) is an isomorphism on torsion subgroups
(Roitman’s theorem; see [33]). However, if H(X, Q% ) = H"**(X) # 0 for
some i > 2, then CH((X)g — Alb (X)(k) is not an isomorphism; in fact
CH o(X)o is not the group of points of an Abelian variety in any natural
way (this is a result of Mumford [26] for surfaces, generalised to arbitrary
dimension by Roitman [32]).

In this situation, a well known conjecture of Bloch asserts that if X is a
surface with H*(X) = 0, then in fact CHo(X)o = Alb (X). If this is the
case, the natural map CH *(C) — CH ?(X) is surjective, for C' any hyperplane
section of X (or more generally, an ample divisor). This may be generalized
as follows:

(Generalised Bloch’s Conjecture) If H*® = 0 for all i > r, then there is a
subvariety f : Z — X, where dim Z = r, such that f,: CH"(Z) — CH"(X)
is surjective; in fact one may expect this to hold for any ‘sufficiently ample’
Z.



Some examples are known in support of these conjectures; for example, Bloch,
Kas and Lieberman [6] showed that Bloch’s conjecture (for surfaces) is true
for surfaces which are not of general type. Other (rather special) examples
have been given by several authors; most recently Voisin [41] has shown
that the conjecture holds for Godeaux surfaces. In higher dimensions, Roit-
man [33] shows that CH™(X) = Z for smooth projective complete intersec-
tions with H™(X) = 0 (complete intersections always have H*?(X) = 0
for i < n). In [8], it is shown that if X is the (desingularized) Kummer
variety associated to an Abelian variety of odd dimension n, then there is a
divisor D C X such that CH" (D) — CH"(X); here H™%(X) = 0 but
H"19(X) £ 0.

The results of Mumford-Roitman on non-triviality of Chow groups of 0-
cycles are over C, or rather, over universal domains; if X is defined over
a field k, the above proofs (or variations of them) can be adapted to work
over the algebraic closure of the function field k(X) of X over k. This raises
the question as to whether the Chow group of 0-cycles is trivial in those
cases over smaller algebraically closed fields. Schoen and Nori (see [36]) have
constructed examples of surfaces over Q such that over Q(t), an algebraically
closed field of transcendence degree 1, the Chow group of 0-cycles of degree
0 differs from the Albanese variety. Conjecturally, for any smooth projective
surface over Q, the Chow group of 0-cycles of degree 0 is isomorphic to the
Albanese; this is a particular instance of the Bloch-Beilinson conjectures. No
non-trivial example of this conjecture has been verified, at present.

The above theory for zero-dimensional cycles admits generalizations to
the case of singular projective varieties as well; see [38], [39], [37], [23].

Another area of application of the theory of zero cycles is when X is
non-projective or even affine. The group CH"(X) need not be 0 (unlike the
top cohomology H?"(X,Z)), in this case. For example, it is standard to use
non-vanishing intersection numbers to provide obstructions to the existence
of embeddings in P?" of smooth projective varieties of dimension n; similar
arguments can be given for affine varieties of dimension n if the analogous
obstruction element in CH™(X) is non-zero. Thus the theory of algebraic
cycles has applications to the study of projective modules, and to affine
algebraic geometry (see [7]). However, these results are usually much subtler
than the analogous ones using intersection numbers.



5 Equivalence relations

We have introduced three equivalence relations in the previous two sections,
which can be defined as follows for cycles in every codimension.

1. (Algebraic equivalence) a € CH?(X) is algebraically equivalent to 0if there
is a non-singular projective curve C, an element § € CH?(X x (') and points
x1, T € C such that i{3 —i50 = a, where i; : X — X x C'is ij(x) = (x, xj).
Then (3 in fact determines a homomorphism Cl1°(C') — CHP?(X), where
CI°(C) is isomorphic to the group of points of the Jacobian variety of C.
The subset of CH?(X) of elements algebraically equivalent to 0 is a subgroup
CH},,(X); from the definitions, one sees that CHY, (X) is a quotient of a
direct sum of Jacobians of projective smooth curves, hence is a divisible
Abelian group.

2. (Homological equivalence) If £ = C, then CHY (X) is the kernel of the
cycle class homomorphism CH?(X) — H?(X,Z).

3. (Numerical equivalence) If X is projective, then a« € CH?(X) is numer-
ically equivalent to 0 if for any f € CH"P(X), the intersection product
aff € CH™(X) has degree 0. The elements numerically equivalent to 0 form
a subgroup CH? (X) C CH?(X).

num

For simplicity, we restrict ourselves to the case k = C. Now

CH?

alg

(X) c CHY

hom

(X)cCH?

num

(X) Cc CHP(X).
One of Grothendieck’s standard conjectures asserts that

CH? . (X)={x € CHP(X) | nz € CHY (X) for some positive integer n}.

num hom

Equivalently,

One way of proving this could be to attempt to show that CH?, (X)® Q Z

alg

CH?, (X)® Q. This holds for divisors and zero cycles in particular. So we

num

introduce the quotient CH}  (X)/CHY, (X) = Griff (X)) which is called the
pth Griffiths group of X; note that Griff *(X) = Griff }(X) = 0 as remarked
in the previous sections.

The terminology is because of the famous example of Griffiths [16] show-

ing that Griff 2(X) # 0 for a general hypersurface X of degree 5 in P¢, and in



fact Griff 2(X) has an element of infinite order. Later, Clemens [10] showed
that Griff ?(X) has infinite rank in this case. Other examples of the non-
triviality of the Griffiths group were given by Ceresa [9], who showed that if
C' is a generic curve of genus > 3 embedded in its Jacobian variety X, and
i(C) is the image under multiplication by —1 on X, then [C] — [i(C)] gives
an element of infinite order in Griff 9=1(X); for ¢ = 3, Nori [28] noted that
using the action of Hecke correspondences, this in fact implies that Griff 2(X)
has infinite rank in that case. Further examples of non-triviality or infinite
dimensionality of Griff ?(X) ® Q were obtained by Bardelli [3], Voisin [42]
and Paranjape [30].

B. Harris [18] showed that if C'is the Fermat quartic curve U+ V*+W* =
0 in PZ, then Ceresa’s cycle [C] — [i(C)] is non-trivial in Griff 2(X), where X
is the Jacobian of C', by reducing this via iterated integrals to the observation

that
5 /1 /x dt dx
o Lo (L=t (1 —ah)

| w7

is not an integer! If this number is irrational, his method implies this element
has infinite order in Griff 2(X), a fact which was proved by other methods
by Bloch [4]. This gives an example of such a cycle defined over Q. Schoen
[35] showed that for a certain elliptic modular 3-fold X over Q (the field of
algebraic numbers), Griff ?(X) has infinite rank.

In all of these examples, the ambient variety has trivial canonical bundle
(tangent bundle, in Ceresa’s situation), and one uses image of the cycle under
the Abel-Jacobi homomorphism to the intermediate Jacobian of Griffiths’
(explained in Section 6). For example, in B. Harris” example, the number
whose non-integrality is asserted is essentially an integral of holomorphic
3-form (an element of H?%(X)), whose value is not a period of that 3-form.

There is a new class of examples of non-triviality of Griff ?(X) ® Q con-
structed by M. Nori [29], in which the canonical bundle of the variety is
ample, and the intermediate Jacobian in question is 0. Nori has introduced
a filtration of the Griffiths’ group and one can show that every associated
graded term in this filtration can be non-zero (Albano and Collino [1] have
shown that it can even be of infinite rank). We discuss this further below in
the context of conjectural Lefschetz theorems for Chow groups.
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Bloch had asked if the Griffiths group is always divisible (for varieties
over algebraically closed fields); very recently, Bloch and Esnault have found
a counter-example [5]. Schoen [34] has an example (in positive characteristic)
of a smooth variety X such that Griff (X)) contains a (non-zero) divisible
subgroup, for some p.

Other equivalences have been recently introduced and studied on Chow
groups with the idea of settling the standard conjectures and also the Bloch
conjecture.

6 Chow groups and Abelian varieties

For any smooth projective variety we can form a countable collection of
projective schemes Hilb, (the Hilbert or Chow schemes) that parametrise
effective cycles of codimension p on X. Let C(X) be a subgroup of CH?(X).
A homomorphism of groups from C(X) to the group of rational points of a
group variety A is called regular if for any non-singular variety H parametris-
ing cycles on X lying in C'(X), the resulting set maps from the set of rational
points on H to the set of rational points of A is induced by a morphism of
varieties.

In analogy with the picture for divisors one may ask the following ques-
tions:

1. Is there a finitely generated group N(X), a surjective map £ : CH?(X) —
— N(X), and a regular map from C'(X) = ker ¢ to the group of points
on an Abelian variety A, so that any regular map from C(X) to an
Abelian variety factors through A?

2. Does this induce an isomorphism of CH?(X) with N(X) x A(k)?
(Here A(k) denotes the group of k-rational points of A.)

3. Is there a variety (or scheme) H parametrising effective cycles on X so
that the morphism H — A is surjective? Or at least can we arrange
imH =im CH?(X)?

There is no general geometric construction of the required Abelian variety.
There is a complex torus associated to codimension p cycles, defined by
Griffiths, which generalizes the Picard and Albanese varieties. This is called
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the pth intermediate Jacobian of X, and is defined by

H»-1(X,C)

P(X) = .
T FPH2-1(X,C) + imH % (X, Z)

Here
FPH* (X, C) = @y, H7 P71 77(X)

is the pth piece of the Hodge filtration of H?’~1(X,C). We can take the map
¢ : CHP(X) — H*(X,C) and let C(X) = CH? (X) = ker¢ as before.

There is a map, which Griffiths calls the Abel-Jacobi map,

CH?Y

hom

(X) — JP(X).

However, this does not have as good properties as the Picard and Albanese
maps, in general. The image of CH?, (X)) is an Abelian subvariety of J?(X)
whose Lie algebra is contained in HP~P(X) ¢ H?*~}(X,C)/FP(H*~1(X,C).

The Griffiths group Griff (X)) is always countable, since all effective al-
gebraic cycles of a fixed degree are parametrized by the points of a (possibly
reducible) Chow variety of X; taking the union over all degrees, all effective
algebraic cycles lie in a countble collection of connected algebraic families,
so that CH?(X)/CH?, (X) is countable. Hence if H**~17¢(X) #£ 0 for

al
some ¢ > p, then the Algel—Jacobi map cannot be surjective. The restriction
of the Abel-Jacobi map to CH?, g(X ) is a regular homomorphism onto the
Abelian variety which is its image; conjecturally, this is the universal regu-
lar homomorphism, as in the case of the Albanese map. One also expects
the Abel-Jacobi map to be injective on torsion, in general. The injectivity
of the Abel-Jacobi map on torsion is known for codimension 2 cycles, from
work of Merkurjev and Suslin on the K-theory of division algebras, combined
with results of Bloch and Ogus; we discuss this below. The universality of
the Abel-Jacobi map on CH?, (X) has been proved by Murre [27] using the

injectivity on torsion.

7 Relation with cohomology

As we mentioned above, the Chow groups are an analogue for the even co-
homology of a smooth projective variety over C. To make this relation more
precise we first examine the cycle class map CH?(X) — H? (X, Z).
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The theorem of Lefschetz on (1,1) classes asserts that the image of the
cycle class map CH'(X) — H?(X,Z) is precisely the kernel of H*(X,Z) —
H?(X,C)/F'H?(X,C), where F* denotes the Hodge filtration. Equiva-
lently, with respect to the Hodge decomposition H™ (X, C) = ©ptqemHP(X)
into spaces HP¢ of harmonic forms of type (p,q), the classes of divisors
in H2(X,Z) are precisely those classes « such that ac € H?(X,C) lies in
HUH(X).

A similar assertion for CH™(X) — H?"(X,Z) when n = dim X is obvious
since this homomorphism is surjective. Thus one could conjecture that the
image of CH?(X) — H?(X,Z) consists precisely of the subgroup of Hodge
classes

Hg?(X,7) = ker(H*(X,Z) — H*(X,C)/FPH?>(X,C))

However, this is known to be false unless we tensor with Q. Early counter-
examples are in [2], and more recently one knows from the work of Koll4r,
Mori, Miyaoka [22] that a general hypersurface of degree 125 in P* cannot
contain a cycle of degree 1. The assertion:

CH?(X)®Q — Hg?(X,Q) is surjective

is the celebrated Hodge conjecture. Many special cases are known but there
is no general theorem (or even heuristic) in this direction.

The second relation of Chow groups to cohomology is via Griffiths” Abel-
Jacobi homomorphism to the points of the Intermediate Jacobian. As we
saw with zero cycles, the kernel of this homomorphism can be very large.
On the other hand Bloch’s conjecture asserts (in the case of zero cycles) that
the kernel is torsion (hence zero by Roitman’s theorem) in case the Hodge
decomposition of H?*"*(X, C) has no end terms.

Beilinson has generalised this as follows. We define the level filtration
LPH?~%(X,Q) as the intersection the kernels of the restriction homomor-
phisms H#*(X) — H?*7%(Y), where Y runs over all subvarieties of X of di-
mension less than p. Let k(p) be the largest integer such that LPH2P=*( X, Q) #
H?7%(X Q). Then (conjecturally) the complexity of CH?(X) ® Q is “mea-
sured” by k(p). In particular, he conjectures that (a) if k(p) = 0, then
CH? (X)®Q =0, and (b) if k(p) = 1, then the kernel of the Abel-Jacobi
homomorphism should be torsion.

For X a complete intersection subvariety of P¥ we have the result of
Esnault-Nori-Srinivas [13] which generalises earlier work of Deligne and
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Deligne-Dimca, computing the width of the Hodge structures. From these
results one can show that for a fixed p and multidegree, and for sufficiently
large N (made precise by their results), we have k(p) = 0 (if Grothendieck’s
generalised Hodge conjecture is true). The Chow groups of these varieties
ought to be Z upto torsion. One can see that Roitman’s theorem on zero
cycles precisely achieves the predicted result. For higher dimensional cycles
a weak form of this conjecture is known; see [24], [31].

Another way of examining the consequences of this conjecture is to look
at the situation of a smooth subvariety Y of X such that the restriction map
on cohomology induces an isomorphism LPH?P~*(X Q) — LPH?*7*(Y Q).
One such case is again the complete intersection situation, where the Left-
shetz hyperplane section theorems give us such isomorphisms. In this case
the Grothendieck-Lefschetz theorem precisely achieves the bound predicted.
This theorem asserts that the restriction map CHY(X) — CHY(Y) is an
isomorphism for n = dimY > 3, and an inclusion for n = 2.

A more refined analysis using the monodromy of Lefschetz pencils shows
that for n = 2, we have CH'(X) = CHY(Y) provided Y is a general hyper-
plane section; this is called the Noether-Lefschetz theorem. Similarly, it is
known that for n =1, CH'(X) — CH(Y) is injective for general Y.

The higher dimensional analogue of the Grothendieck-Lefschetz theorem
was posed as a problem by Hartshorne [19] (well before Beilinson formu-
lated his conjectures). Only very weak results are known in this direction
[31]. Higher dimensional analogues of the Noether-Lefschetz theorems have
recently been formulated by Nori [29] with cohomological justification rather
similar to the Beilinson conjectures. Some very weak statements along these
lines are known [15], [40], [21].

References

[1] A. Albano and A. Collino. On the Griffiths group of the cubic sevenfold.
to appear in Math. Annalen.

[2] M. Atiyah and F. Hirzebruch. Analytic cycles on complex manifolds.
Topology 1:25-45, 1962.

[3] F. Bardelli. On the Grothendieck generalised Hodge conjecture for a
familey of threeefolds with geometric genus one, volume 92 of Teubner-
Tezte in Math., pages 14-23. 1986.

14



[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Bloch. Algebraic Cycles, volume 4 of Duke University Math. series.
Duke University Press, Duke University, Durham, NC, 1980.

S. Bloch and H. Esnault. The coniveau filtration and non-divisibility for
algebraic cycles. . Preprint.

S. Bloch, D. Kas, and D. Lieberman. Zero cycles on surfaces with
pg = 0. Compos. Math. 33:135-145, 1976.

S. Bloch, M. P. Murthy, and L. Szpiro. Zero cycles and the number
of generators of ideals. Colloque en [’honneur de Pierre Samuel, Mem.
Math. Soc. Fr. (new ser.) 38:51-74, 1989 (Supplement au Bull. Soc.
Math. Fr. 117).

S. Bloch and V. Srinivas. Remarks on Correspondences and Algebraic
cycles. Amer. J. Math., 105:51-66, 1986.

G. Ceresa. C'is not algebraically equivalent to C~ in its Jacobian. Ann.
Math. 117:285-291, 1983.

C. H. Clemens. Homological equivalence modulo algebraic equivalence
is not finitely generated. IHES Publ. Math., 58:19-38, 1983.

S. D. Cutkosky and V. Srinivas. Zariski’s problem on the dimensions of
linear systems. Annals of Math. 137:531-559, 1993.

P. Deligne, J. Milne, A. Ogus, and K.-Y. Shih. Hodge cycles, Motives
and Shimura varieties, volume 900 of Lecture notes in Mathematics.
Springer-Verlag, Berlin-Heidelberg-New York, 1982.

H. Esnault, M. V. Nori, and V. Srinivas. Hodge type of projective
varieties of small degrees. Math. Annalen, 293:1-6, 1992.

W. Fulton. Intersection Theory, volume 2 of Ergeb. der Math. (Folge 3)
Springer-Verlag, Berlin-Heidelberg-New York, 1984.

M. Green. Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J.
Diff. Geom., 29:545-555, 1989.

P. Griffiths. On the periods of certain rational integrals I,LII. Annals of
Math., 90:460-541, 1969.

15



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]
[29]

[30]

P. Griffiths and J. Harris. Principles of Algebraic Geometry. John Wiley
and Sons, 1978.

B. Harris. Cohomological versus algebraic equivalence in a jacobian.

Proc. Natl. Acad. Sci. (USA) 80:1157-1158, 1983.

R. Hartshorne. Fquivalence relations on algebraic cycles and subvarieties
of small codimension. Proc. Symp. Pure Math. 29:129-164, AMS, 1975.

U. Jannsen. Mized Motives and Algebraic K-theory, volume 1400 of
Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New York
1990.

K. Joshi. A Noether-Lefschetz theorem and applications. To appear in
J. Alg. Geom.

J. Kollar, Y. Miyaoka, and S. Mori. Rational curves on algebraic vari-
eties. Preprint.

M. Levine. Torion O-cycles on singular varieties. Amer. J. Math. 107:737-
758, 1985.

J. Lewis. The cylinder homomorphism and algebraic cycles. Preprint.

D. Mumford. Curves on an Algebraic surface, volume 56 of Annals of
Math. Studies. Princeton University Press, Princeton University, NJ.,
1969.

D. Mumford. Rational equivalence of 0-cycles on surfaces. J. Math.
Kyoto Univ., 9:194-204, 1968.

J. Murre. Un résultat en théorie des cycles algébriques de codimension
deux. C. R. Acad. Sci. Paris Sér. I Math. 296:981-984, 1983.

M. V. Nori. Letter to C. H. Clemens. 1983.

M. V. Nori. Algebraic cycles and Hodge theoretic connectivity. Invent.
Math., 111:349-373, 1993.

K. H. Paranjape. Curves on threefolds with trivial canonical bundle.
Proc. Ind. Acad. Sci. (Mat. Sci.) 101:199-213, 1991.

16



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. H. Paranjape. Cohomological and cycle theoretic connectivity. Annals
of Math. 139:641-660, 1994.

A. A. Roitman. Rational equivalence of zero dimensional cycles. Math.

USSR Sbornik, 18:571-588, 1972.

A. A. Rojtman (= A. A. Roitman). Torsion in the group of zero dimen-
sional cycles. Annals of Math., 111:553-569, 1980.

C. Schoen. On the computation of the cycle class map for nullhomolo-
gous cycles over the algebraic closure of a finite field. Preprint.

C. Schoen. Complex multiplication cycles on elliptic modular threefolds.
Duke Math. J. 53:771-794, 1986.

C. Schoen. Zero cycles modulo rational equivalence for some varieties
over fields of transcendence degree one. Algebraic Geometry 1985, Proc.
Symp. Pure Math. 46 (Part 2), 1987.

V. Srinivas. Torsion 0-cycles in characteristic p. J. Algebra 120:428-432,
19809.

V. Srinivas. Zero cycles on a singular surface III. J. Reine und Angew.
Math. 359:90-105, 1985 and 362:4-27, 1985.

V. Srinivas. Zero cycles on a singular variety. AMS symposia in Pure
Math. Bowdoin, 1985, Proc. Symp. Pure Math. 46 (Part 2), AMS, 1987.

C. Voisin. (unpublished).

C. Voisin. Sur les zéro-cycles de certaines hypoersurfaces munies d'un
automorphisme. Annali di Scoule Normale Superiore di Pisa, 299:473—
492, 1993.

C. Voisin. Une approche infinitésimale du théoreme de h. clemens sur
les cycles d’un quintique générale de P*. J. Alg. Geom., 1:157-174, 1994.

O. Zariski. The theorem of Riemann-Roch for high multiples of an
effective divisor on an algebraic surface. Ann. Math. 76:560-616, 1962.

17



