
CHAPTER 1

Pre-requisites

We will go over the pre-requisites for a second course on geometry in the form
of exercises which lead to the important results. If you are willing to assume the
results stated then you do not need to do the exercises, however, it is worthwhile
to go over these at least once in your life!

1. Introduction of co-ordinates

Let us assume that we have the usual axiomatic framework of Euclidean ge-
ometry. We will show that the points on a line can be given arithmetic operations
and identified with the “usual” decimal numbers. Moreover, we can introduce co-
ordinates in space using the Euclidean framework. One important thing to note is
that use only the parallel postulate—congruence (hence distance and angle) play
no role in the introduction of co-ordinates.

We are given some gadget that can draw the line joining two points and the
line parallel to a given line through a point outside it. Such a gadget is a ruler
with a roller. (Alternatively you can use the xfig program). In the following
constructions (see Figures 1 and 2) we have numbered the lines and points in the
sequence in which they are obtained. Assume given a pair of points 0 and 1. We
can define addition and multiplication for points a and b on the line l joining 0 and
1 by the constructions given below (the final point in each construction is the sum
or product of the the two original points).

0 a b

p0

p1

a+ b = p2

Figure 1. Addition

Exercise 1. Show that the following (usual) rules of arithmetic hold; in other
words the points on a line form a field.

1. The commutative law for addition: a+ b = b+ a.
2. The commutative law for multiplication: ab = ba.
3. The associative law for addition: (a+ b) + c = a+ (b+ c).
4. The associative law for multiplication: a(bc) = (ab)c.
5. The distributive law: a(b+ c) = ab+ ac.
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0 1 a b

p0

p1

a · b = p2

Figure 2. Multiplication

6. The identity for addition: a+ 0 = a.
7. The identity for multiplication: a · 1 = a.
8. For any a there is a point (−a) so that a+ (−a) = 0.
9. For any non-zero a there is a point (1/a) so that a(1/a) = 1.

10. If O′ and 1′ are two other points then give a natural correspondence between
the points of the line l′ joining 0′ and 1′ and the line l so that the arithmetic
structure is preserved.

In addition, we can use the notion of order on the points of a line to define an
order in our arithmetic by saying that a number lies between two other numbers if
the corresponding points have the same relation. In particular, we say that a > 0
if a is between the points 1 and 0 or if 1 is between a and 0 or if a is 1.

Exercise 2. Show in addition that if a > 0 and b > 0 then a + b > 0 and
a · b > 0.

The following two important axioms are due to Archimedes (but only one carries
his name):

Axiom 1 (Archimedean Property). (Also known as “Big step – Little step”) If
x > 0 (is a Little step) and y > 0 (is the Big step) then there is a natural number
n (the number of little steps) so that y is less than nx.

The second axiom is perhaps even less “obvious” but is essential.

Axiom 2 (Least Upper Bound). If An is a sequence of points so that for all
n, An+1 lies between An and D for some fixed point D (i. e. An move towards D
but do not reach it). Then there is a point B which is the “limit” of An. In other
words, An+1 is between An and B for all n and if C is any other point so that An+1

lies between An and C then B lies between An and C for all n (see figure 3).

A1 A2 A3 · · · CB

Figure 3. The Least Upper Bound

Exercise 3. We introduce the decimal representation of a real number as fol-
lows.

1. Use the Archimedean Property to show that for any real number x there is
an integer n so that n ≤ x < n + 1. This integer is called the integer part
[x] of x.
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2. Show that the sequence xn = [10nx]/10n is a non-decreasing sequence.
3. Use the Least Upper Bound property to conclude that xn has a limit y.
4. Using the principle of the excluded middle show that y = x.

Finally, we choose four non-coplanar points in space and designate them o, e1,
e2 and e3. The point o is called the origin the line through o and e1 (respectively e2

or e3) is called the x-axis (respectively y-axis or z-axis). By drawing lines parallel
to the axes we can produce for any point a unique triple of points (x, y, z) one on
each axis which uniquely determine the point in space. By the above method we
obtain the co-ordinates in decimals as well.

Exercise 4. Show that a line in the plane is the locus of all points with co-
ordinates (x, y) such that ax + by + c = 0 for some constants a, b and c so that a
and b are not both zero. Also show the converse.

2. Conic sections

In the co-ordinate plane one can study more general geometric figures that those
desribed by lines. In this section we undertake a rigorous study of conic sections.
In particular, we find geometric criteria that distinguish the different conics. We
also establish Steiner’s construction of conic sections as the locus of intersection of
a pair of rotating lines.

The first equation that is more complicated that the equation of a line as given
above is one of the form

ax2 + bxy + cy2 + dx+ ey + f = 0

where a, b and c are not all zero (in which case the equation would become that
of a line). The locus of points (x, y) that satisfy this equation is called a conic or
a conic section. By plotting the corresponding curves we find that we have the

Circle Ellipse Parabola Hyperbola

Figure 4. The Smooth Conics

following types of conics:
1. There are no solutions.
2. The solutions all lie on one line.
3. The solutions all lie on a pair of lines.
4. The conic lies within a bounded region of the plane (i. e. the conic is com-

pact). This called an ellipse (of which the circle is a special case).
5. The conic has two parts (i. e. the conic is disconnected).This is called a

hyperbola.
6. The conic is connected and not compact. This is called a parabola.

We note that the first three types are distinguished without reference to order
among numbers (or separation axioms in geometry) and so make sense over other
fields. We will see below how we can distinguish the other conics in a purely
algebraic way.
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Exercise 5. Find ways of distinguishing the different conics by looking at the
equation. (Hint: Examine the discriminant b2 − 4ac).

For any line ax + by + c = 0 with a non-zero, we can write the solutions in
terms of one parameter as (−bt− c/a, t); similarly when b is not zero. We can also
“solve” a conic. Let us suppose that the conic is not of type (1), (2) or (3) above.
Fix a point (x0, y0) on the conic.

Exercise 6. We will find a parametric solution of a conic. (Hint: Use trans-
lation and scaling of co-ordinates to simplify the equations wherever possible).

1. Let (y − y0) = t(x− x0) be a line through this point. Show that there is at
most one other point of the conic that lines on this line.

2. Find the co-ordinates of this point in terms of the constants a, b, c, d, e, f ,
x0, y0 and the parameter t.

3. Show that this parametric solution is not well defined at two values of t for
a hyperbola.

4. Show that this parametric solution misses one point in the case of an ellipse
or circle but is well-defined at all values of t.

5. Show that this parametric solution is not well defined for one value of t and
misses one point or is well defined and misses no points on a parabola.

This can be carried further through Steiner’s construction as follows. Let
(x1, y1) another point on the conic.

Exercise 7. Show that there are constants A, B, C and D so that for any
point (x2, y2) of the conic we have

s =
At+B

Ct+D
when t =

y2 − y0

x2 − x0
and s =

y2 − y1

x2 − x1

Moreover, these constants are such that if we try to solve for s = t, we obtain no
solutions when the conic is an ellipse (or circle), one solution for a parabola and
two solutions for a hyperbola.

Figure 5. Steiner’s Construction

The geometric content of this is the statement that the conic is obtained as
the locus of intersection of a pair of rotating lines based at (x0, y0) and (x1, y1)
respectively with respective slopes s and t related by s(Ct+D) = At+D.

Exercise 8. Prove the converse that such a locus is always a conic.
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3. Polynomials and polynomial functions

We now revise the definition and elementary properties of polynomials and
polynomial functions. The fundamental ideas of calculus consist of extending these
notions to a larger class of functions.

There are two ways of approaching the concept of function. The ancient way
is through formulae, while the modern approach is through the study of functions
of sets of points. Most functions that we study arise naturally and can be defined
formally (i. e. by formulae or expressions). On the other hand, many of the prop-
erties demanded of functions are best defined by thinking of them as set functions.
Moreover, most of the formulae have a “life of their own”; the formal expressions
have a more general validity than as functions alone. Thus the study of formulae
becomes algebra while the study of functions becomes analysis. Calculus is thus
seen differently by algebraists and analysts. The fundamental example in both
cases is that of a polynomial which we study below.

3.1. Polynomials in one variable. A polynomial P in one variable x is
formally defined as a follows

P (x) = p0 + p1x+ · · ·+ pnx
n

where the pi are constants. If n = 0 we identify the polynomial with the constant
p0. If pn 6= 0 then we say the polynomial has degree n. If pn = 0 then we drop
the corresponding term unless n = 0; the degree of the constant polynomial 0 is
considered undefined.

Exercise 9. Define the arithmetic operations on polynomials algorithmically
so that polynomial manipulations can be implemented on a computer.

Polynomials can be “evaluated” to give functions; for any choice of a of constant
b, we can substitute x by b to obtain the “value” of the polynomial; this gives us
the function associated with a polynomial. However, note that when the field of
constants is finite (e. g. the field with two elements F2) a non-constant polynomial
might induce a constant function.

Exercise 10. Give an example of a polynomial that is not constant but gives
a constant function on the field with three elements.

The points where the function associated with the polynomial vanishes are
called solutions or roots of the polynomial.

Exercise 11. Let P (x) be a polynomial of degree n in one variable. The
constant b is a root of P (i. e. P (b) = 0) if and only if P (x) can be written as a
product (x − b)Q(x) where Q(x) has degree n − 1. Hence or otherwise show that
P (x) has at most n roots.

The polynomial x2 + 1 has no roots over the field of real numbers. The field
of complex numbers is collection of numbers of the form a+ b

√
−1; where a and b

are real numbers.

Exercise 12. Define the arithmetic operations on complex numbers algorith-
mically in terms of the arithmetic operations on real numbers. Show that any
quadratic polynomial x2 + ax + b is a product (x − d)(x − c) over the field of
complex numbers (d and c need not be distinct).
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The Fundamental Theorem of Algebra states that any polynomial over the field
of real numbers is a product of linear and quadratic terms upto a non-zero constant
multiple. Thus any polynomial with real coefficients has all its roots over complex
numbers.

Exercise 13. Assuming the fundamental theorem of algebra show that any
polynomial with complex coefficients has all its roots over complex numbers.

In the above discussion, we used the phrase “has all its roots” as a synonym for
writing the polynomial as a product of linear terms. Now if some of these factors
repeat then we say we have repeated or multiple roots. In particular, we can say
that (x− b)k vanishes k times at b.

Exercise 14. Use the Binomial theorem to write a polynomial of P degree n
as follows

P (x) = p̃0 + p̃1(x− b) + · · ·+ p̃n(x− b)n

for some constants p̃i.

Thus we can say that a polynomial vanishes to order k at b if the terms in the
above expression for it satisfy p̃i = 0 whenever i < n.

Exercise 15. If P and Q vanish to order k at b, then so does R · P + Q for
any polynomial R.

Note that p̃0 is the value P (b) of P at b. Moreover, the term p̃1 depends on P
and on b that we will now to determine. Suppose that we have

P (x) = p̃0 + p̃1(x− b) + terms that vanish to order 2 at b
Q(x) = q̃0 + q̃1(x− b) + terms that vanish to order 2 at b
R(x) = r̃0 + r̃1(x− b) + terms that vanish to order 2 at b

The above algebraic property of vanishing to order n shows us that

R · P +Q = (p̃0q̃0 + r̃0) + (r̃0p̃1 + r̃1p̃0 + q̃1)(x− b)
+ terms that vanish to order 2 at b

Thus, if we denote the rule that associates the constant p̃1 with P as (d/dx)|b, then
this satisfies

(d/dx)|b(R · P +Q) = (d/dx)|b(R)P (b) +R(b)(d/dx)|b(P ) + (d/dx)|b(Q)

Such a rule (which takes polynomial to constants) is called a (constant) derivation.
If we formally replace b by the variable x we obtain the requirement for a polynomial
derivation (which takes polynomial to polynomial). A polynomial derivation is a
rule D which associates to every polynomial P another polynomial D(P ) so that

D(R · P +Q) = R ·D(P ) +D(R) · P +D(Q).

and D(c) = 0 for a constant polynomial c.

Exercise 16. For any derivation D and any polynomial P show that D(Pn) =
nPn−1D(P ). (Hint: Use induction). Hence or otherwise show that a derivation is
determined on all polynomials once one knows what it does to the variable x.
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In particular, for there is a derivation which takes x to 1. This is called the
derivative with respect to x and is denoted by dP/dx.

Exercise 17. Show that the value of dP/dx at b is (d/dx)|b(P ).

The relation between derivations and the order of vanishing is given by

Exercise 18. If P vanishes to order n at b then D(P ) vanishes to order n− 1
(for any derivation D).

One of the aims of calculus is to find a larger class of functions which can be
studied in a manner analogous to that given above for polynomials. To do this we
need to generalise the notion of “vanishing to order n” and derivations.

A simple way to enlarge the class is to consider “rational functions”, constructed
from polynomials the same way as fractions are from natural numbers. A rational
function is of the form P/Q where P and Q are polynomials with Q 6= 0.

Exercise 19. Extend the definitions of the arithmetic operations and d/dx to
rational functions.

Let P and Q be any polynomials. The usual division algorithm allows us to
write an expression P = RQ + S , where R and S are polynomials and the degree
of S is less than that of Q or S is zero. Using this and the fundamental theorem of
algebra it is not difficult to show

Exercise 20. Every rational function over real numbers is the sum of terms
of the form

a

(x− b)n
and/or

ax+ b

((x− c)2 + d2)n

This the called the partial fraction expansion.

Given a polynomial P consider the problem of trying to find a polynomial Q
so that dQ/dx = P . This is quite easily solved using the fact (proved above) that
d(xn)/dx = nxn−1. When the problem is posed for rational functions it becomes a
bit harder.

Exercise 21. Show that
d

dx

1
(x− b)n

=
−n

(x− b)n+1

d

dx

1
((x− c)2 + d2)n

=
−2n(x− c)

((x− c)2 + d2)n+1

Hence given any rational function P/Q over reals the only hurdle to solving the
problem of finding a function f so that df/dx = P/Q is to solve this when P/Q is
either 1/(x− b) or (ax+ b)/((x− c) + d2). In the section on integration we will see
how these problems can be solved.

3.2. Polynomials in more than one variable. Let us begin by considering
polynomials in two variables x and y

P (x, y) = p0,0 + p1,0x+ p0,1y + p2,0x
2 + p1,1xy + p0,2y

2 + · · ·+
+ · · ·+ pn,0x

n + · · ·+ p0,ny
n

where pk,l are constants. The degree of a term pk,lx
kyl is defined as k + l if pk,l is

non-zero. The degree of a polynomial is the maximum of the degrees of each of its
non-zero terms and the degree of the zero polynomial is undefined as before.
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Exercise 22. Define the arithmetic operations on polynomials algorithmically
so that polynomial manipulations can be implemented on a computer.

Polynomials can be “evaluated” to give functions; for any choice of a pair of
constants (a, b), we can substitute x by a and y by b to obtain the “value” of
the polynomial. By identifying the pair of constants (a, b) with the corresponding
point in the plane, this gives us the function (on the plane) associated with the
polynomial. The points where the function associated with the polynomial vanishes
are called solutions of the polynomial.

In particular, a polynomial P (x, y) as above has the origin (0, 0) as a solution
only if the constant term p0,0 is zero. More generally, we say a polynomial vanishes
to order m at the origin (0, 0) if all its terms have degree at least m.

The Binomial theorem allows us to extend this notion to points (a, b) other
than the origin.

Exercise 23. Use the Binomial theorem to write a polynomial of degree n as
a sum of terms of the form

p̃k,l(x− a)k(y − b)l

where k + l is at most n.

Thus we can say that a polynomial vanishes to order m at (a, b) if the terms
in the above expression for it satisfy k + l ≥ m whenever the coefficients p̃k,l are
non-zero.

Exercise 24. If P and Q vanish to order m at a point, then so does R ·P +Q
for any polynomial R.

Because of this we can work with arithmetic operations on polynomials “mod-
ulo” terms that vanish to order m at a given point (a, b). In particular, any poly-
nomial is like a linear polynomial upto terms that vanish to order two.

P (x, y) = p̃0,0 + p̃1,0(x− a) + p̃0,1(x− b) +

terms that vanish to order 2 at (a, b))

As before p̃0,0 is the value of P at (a, b).

Exercise 25. If we denote the rule P 7→ p̃0,0 by (∂/∂x)|(a,b) then check that
this is a constant derivation.

We also have polynomial derivations and as before

Exercise 26. Any polynomial derivation is determined by what it does to the
two variables x and y.

In particular we have (∂/∂x) which is defined as the derivation that sends x to
1 and y to 0; ∂/∂y is defined by symmetry.

Exercise 27. Repeat this subsection replacing two variables x and y with n
variables (x1, . . . , xn).

4. Sequences

In this section we revise the notion of convergence for real numbers and prove
the Bolzano-Weierstrass property.

From section 1 we have a least upper bound (greatest lower bound) for any
bounded increasing (respectively decreasing) sequence of real numbers.
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Exercise 28. Show that any bounded non-decreasing sequence of real num-
bers has a least upper bound; a bounded non-increasing sequence has a greatest
lower bound.

Now if S is any bounded non-empty set of real numbers, let c1 be an upper
bound and s1 ∈ S. Now we iteratively define a pair of sequences {sn} and {cn}
as follows. If (sn + cn)/2 is an upper bound for S then we define sn+1 = sn and
cn+1 = (sn+cn)/2; otherwise let sn+1 be any element of S so that sn+1 > (sn+cn)/2
and cn+1 = cn.

Exercise 29. Show that {sn} is a non-decreasing sequence of elements of S
and {cn} is a non-increasing sequence of upper bounds for S so that (cn+1−sn+1) ≤
(sn− cn)/2. Hence show that the greatest lower bound of {cn} is equal to the least
upper bound of {sn} and this bound is the least upper bound for S.

In particular, if {xn} is any bounded sequence of real numbers we have a least
upper bound and greatest lower bound for this sequence. Let us define

lk = the greatest lower bound of {xn|n ≥ k}
uk = the least upper bound of {xn|n ≥ k}

lim inf{xn} = the least upper bound of {lk}
lim sup{xn} = the greatest lower bound of {uk}

Note that {lk} is a non-decreasing sequence and {uk} is a non-increasing sequence.

Exercise 30. Show that lim inf{xn} ≤ lim sup{xn}.

We say that the sequence {xn} has a limit (is convergent) if these two numbers
are equal; this number c is called the limit of this sequence of numbers.

Exercise 31. Show that for every positive ε there is a index n0 so that |xn −
c| < ε for all n > n0. Hence, there is an index n1 so that |xn − xm| < ε for all
n > n1; this called Cauchy’s criterion. Conversely show that any sequence {xn}
that satisfies Cauchy’s criterion is convergent.

Now for any sequence {xn} we can find subsequences {yk = xnk} (with n1 <
n2 < · · · ) so that {yk} is convergent (this is called the Bolzano-Weierstrass prop-
erty).

Exercise 32. Show that there are subsequences of {xn} that converge to
lim inf{xn} and lim sup{xn}.

Finally, let us note some algebraic properties of convergent sequences.

Exercise 33. Show that the sum, difference and product of convergent se-
quences is limit of the sum, difference and product of the terms. If a sequence has
a non-zero limit then show that the inverse of the limit is the limit of the inverses
of the non-zero terms of the sequence.

5. Functions, continuity and differentiability

In this section we will revise the definition and elementary properties of differ-
entiable functions (n times differentiable functions).
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5.1. Definitions. The study of differentiable functions is the study of func-
tions that mimic the behaviour of polynomials “approximately”. To begin with we
must formally define the notion of approximation.

Exercise 34. For any real number 0 < x < 1 show that xn is a decreasing
sequence with limit 0.

In particular, we see that a polynomial that vanishes to order (n + 1) at 0
satisfies the following condition on functions of one variable.

Definition 1. A function g(x) of one variable is said to be in o(xn) if for any
ε > 0 there is a δ > 0 so that

|g(x)| < ε|xn| for all x so that |x| < δ.

An alternative notion is

Definition 2. A function g(x) one variable is said to be in O(xn) is there is
a δ > 0 and a constant C so that

|g(x)| < C|xn| for all x so that |x| < δ

Clearly, any polynomial that vanishes to order n is O(xn). Further, it is clear
that an function g(x) that is O(xn) is o(xn−1) and any function that is o(xn) is
O(xn).

We can extend these notions to many variables as well. A function g(x1, . . . , xn)
of n variables is said to be in o(xn) (respectively O(xn)) if for all lines (x1, . . . , xn) =
(xc1, . . . , xcn) through the origin the restricted function f(x) = g(xc1, . . . , xcn) is
in o(xn) (respectively O(xn)). We can further extend this to define o((x − b)n)
and O((x − b)n) where b = (b1, . . . , bn) is some point, as a way of approximating
functions near this point.

We say that g and f agree upto o((x− b)n) (or f approximates g upto o((x−
b)n)) if f − g is in o((x − b)n). Note in particular, that f and g take the same
value at b.

A function is differentiable n times at the point c if it is approximated upto
o((x − b)n) by a polynomial (of degree n). Clearly, a polynomial of any degree
is differentiable by the results of the previous section. In the one variable case we
write this as follows

f(x) = a0 + a1x+ · · ·+ anx
n + o((x− c)n)

Exercise 35. Show that for any two functions f and g in o(xn) and a function
h which is differentiable n times at the origin, the function h · f + g is in o(xn).

Exercise 36. Show that the numbers ak are uniquely determined by the func-
tion f .

Now the number a1 depends on f and the point c. Now suppose that f is
differentiable (1 times) at all points c so that it can be written as above near every
point c. Then we can define the derived function f ′ by letting f ′(c) = a1 for each
point c; the function f ′ is also called the derivative of f . Now it clear that if f
is the function given by a polynomial P then f ′ is dP/dx. Thus we also use the
notation df/dx for f ′. We have the derivation property as well.
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Exercise 37. If f , g and h are differentiable then so is hf + g and
d

dx
(hf + g) =

dh

dx
f + h

df

dx
+
dg

dx

However, unlike the condition of vanishing to order n at c, the condition o((x−
c)n) is not very well behaved.

Exercise 38. Show that f(x) = x2 sin(1/x) is o(x) but the derivative of f ′ is
not o(x0).

A function f(x) is called continuous at a point c if f(x)−f(c) is o(x−c) (i. e. it
is differentiable 0 times!). It is called continuous it it has this property at all points.
Thus we would like to study functions f which are differentiable and in addition
the derivative f ′ is continuous. Such functions are provided by the fundamental
theorem of calculus.

5.2. Properties. We show the important properties called the intermediate
value property and extremal value property of continuous functions. We also deduce
the clutch of theorems called mean value theorem, Rolle’s theorem and so on for
differentiable functions.

The following important property of continuous functions will be used all the
time.

Exercise 39. Let f(x) be a continuous function and {xn} be a sequence con-
verging to c, then {f(xn} is a sequence converging to f(c). (Hint: Examine the
condition for continuity near c).

Let f(x) be continuous for x satisfying a ≤ x ≤ b. Let c be a real number lying
between f(a) and f(b) we want to show that c is a value of f ; in other words any
number intermediate to two values is itself a value.

Exercise 40. Let s be the least upper bound of the set

{x|a ≤ x ≤ b and f(x) ≤ c}
Show that f(s) = c.(Hint: To show that f(s) ≥ c take a sequence of points ap-
proaching s from above).

Now let C be the least upper bound of the values of f(x), i. e. it is the least
upper bound of the set {f(x)|a ≤ x ≤ b}. The C is an extremal value for f .

Exercise 41. Show that C = f(x) for some x in the range a ≤ x ≤ b. (Hint:
We have a sequence {xn} so that f(xn) converges to C; by the section on sequences
this sequence has a convergent subsequence).

The following property of differentiable functions is very important

Exercise 42. Let f(x) be differentiable for x satisfying a ≤ x ≤ b. Let s be
such that f(s) is an extremal value for f . Then f ′(s) = 0. (Hint: Examine the
condition for differentiability near s).

Now suppose that f(x) is differentiable in the range a < x < b and continuous
at the endpoints a and b as well. Suppose that f(a) = f(b) = 0. There is a point s
where f attains its maximal value; similarly there is a point t where f attains its
minimal value. If s is the point a or b then f(x) ≤ 0 and if t is the point a or b
then f(x) ≥ 0. Thus in case both of these occur then f(x) = 0 for all x; then let
c = (a+ b)/2. Otherwise let c be any one of s and t which is not a or b. Thus we
have a point where f ′(c) = 0.
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Exercise 43. For a general function g(x) which is differentiable in the range
a < x < b and continuous at the endpoints we apply this to the function

f(x) = g(x) +
g(b)− g(a)
b− a

· (x− a)

to show that there is a point c where

g′(c) =
g(b)− g(a)
b− a

6. New Functions from old

There are three primary ways in which new functions can be “constructed”
from old ones. The first and most familiar one is integration. The second method
is the inversion of a monotone function. The third is the implicit definition by an
equation in two variables.

Formally, the integral of a function f is a function denoted by
∫
f which satisfies

d(
∫
f)/dx = f ; note that such a function is only determined upto a constant since

a constant has derivative 0.
Similarly, if f(x) is a function, its formal inverse is a function g(y) so that

g ◦ f = identity. Finally, if f(x, y) is a function of two variables, we can look for a
function g(x) so that f(x, g(x)) = 0 identically.

Algebraically this is all we need. We can easily compute the values of derivatives
at various orders of the new functions in terms of those of the old functions.

Analytically, we need to show that such functions exists under certain reason-
able conditions on the given data. For exmaple, we have already constructed an
integral for a polynomial function.

Here is an example of inversion:

Exercise 44. Let f(x) = x3 show that there is a function g(y) so that g(f(x)) =
x for all x.

And an example of an implicit function:

Exercise 45. Let f(x, y) = x2 + y2 − 1 show that there is a function g(x) for
0 < x < 1/2 so that f(x, g(x)) = 0.

In the sections below, we shall construct such solutions in greater generality.

6.1. Inverse functions. We prove the inverse function theorem. A continu-
ously differentiable function which has non-zero derivative at a point has an inverse
in a neighbourhood of that point (see Figure 6). A function is called monotone if
it preserves or reverses order over the domain of its definition. In other words if
(f(x)−f(y))(x−y) does not change sign for all x and y in the domain of definition
of f . We say f is strictly monotone if in addition the above product is zero only
when x = y. It is clear that a strictly monotone function is one-to-one.

Exercise 46. Let f be monotone and continuous in for x in the interval a <
x < b. Show that there is a function g on the range of f so that g(f(x)) = x for
all x in the interval a < x < b. (Hint: Use the intermediate value theorem and
extremal value theorem).

One way to ensure that a function is monotone is to use Rolle’s theorem in
reverse to prove:
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Figure 6. The Inverse Function

Exercise 47. If f is continuously differentiable and f ′(x0) 6= 0 then show that
f is monotonic in some interval around x0. Hence show that f has a inverse g (as
in the exercise above) in some small enough interval around f(x0).

We can also compute the formal inverse

Exercise 48. If f can be expressed as

f(x) = f(x0) + f1(x− x0) + · · ·+ fn(x− x0)n + o((x− x0)n)

with f1 6= 0, then show that the inverse function g(y) has the following form where
y0 = f(x0).

g(y) = x0 +
1
f1

(y − y0)− f2

f3
1

(y − y0)2 + · · ·+ gn(y − y0)n + o((y − y0)n)

where gn is of the form Pn(f1, . . . , fn)/fn+1
1 , where Pn is a polynomial function.

6.2. Implicit functions. We will prove the implicit function theorem.
Let f(x, y) be a continuous function of two variables so that it is continuous,

and differentiable with respect to y when x is kept fixed; in particular, we have
expression

f(x, y) = f0(x, y0) + f1(x, y0)(y − y0) + ox(y − y0)

where the subscript in the ox denotes the dependence of the condition on x. The
function f1(x, y) is denoted by ∂f/∂y and is called the partial derivative of f with
respect to y (we have already seen this for the case of polynomials). We further
assume that f1 is continuous.

Now suppose that f(a, b) = 0 and c = (∂f/∂y)(a, b) 6= 0. We want to find the
implicit function defined by f = 0. We do this by shoing that for each x near a
there is a unique y so that f(x, y) = 0. Equivalently, we need to show that the
function g(x, y) = y − f(x, y)/c has a unique fixed point for any chosen x near a.

Contractions give rise to functions with a unique fixed point.

Exercise 49. Let 0 < c < 1 be a constant. Let g(x) be a function so that g
send the interval [a, b] to itself and |g(x)− g(y)| < c|x− y| for all x and y in [a, b].
Show that g(x0) = x0 for exactly one point x0 in [a, b].

Consider the function g(x, y) = y− f(x, y)/c as above; we have g(a, b) = b and
(∂g/∂y) = 0. For each fixed x we would like g(x, y) to be a contraction on some
interval around b. As a first step:
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Exercise 50. Using the continuity of f1 show that there is an interval [a −
r, a+r] around a and an interval [b−s, b+s] around b so that |(∂g/∂y)(x, y)| ≤ 1/2
for x and y in these respective intervals. (Hint: Write ∂g/∂y in terms of f1 to
show that it is continuous). In particular, by the mean value theorem show that
|g(x, y)− g(x, y′)| ≤ 1/2(y − y′) on these intervals.

Now by the continuity of f (and thus of g) we can choose a smaller r so that
|g(x, b) − g(a, b)| ≤ s/2 for x in the interval [a − r, a + r]. Since g(a, b) = b, it
follows that g(x, y) = b + (g(x, y) − g(x, b)) + (g(x, b) − g(a, b)) lies in the interval
[b−s, b+s]. Applying the above exercise it follows that for every x there is a unique
point y so that g(x, y) = y or equivalently f(x, y) = 0. We denote this point y as
h(x). This function h is the required implicit function.

We have the identity,

h(x)− h(x′) = g(x, h(x))− g(x′, h(x′)) =

(g(x, h(x))− g(x′, h(x))) + (g(x′, h(x))− g(x′, h(x′)))

Applying the mean value theorem to g(x′, y) we obtain

|h(x)− h(x′)| ≤ |g(x, h(x))− g(x′, h(x)|+ 1
2
|h(x)− h(x′)|

Exercise 51. Use the above inequality and the continuity of g(x, y0) for every
fixed y0 to conclude the h(x) is continuous.

Now if we assume in addition that f is differentiable to order k then it follows
that h is also differentiable to order k by an entirely similar reasoning to the one
in the above exercise.

Exercise 52. If f(x, y) has the form (near the point (a, b))

f(x, y) = f1,0(x− a) + f0,1(y − b) +

f2,0(x− a)2 + 2f1,1(x− a)(y − b) + f0,2(y − b)2 + o((x− a, y − b)2)

with f0,1 6= 0, then show that the implicit function g(x) has the form (near x = a),

g(x) = b− f1,0

f0,1
(x− a) +

f0,2f
2
1,0 + 2f1,1f1,0f0,1 − f2,0f

2
0,1

f3
0,1

(x− a)2 + o((x− a)2)

6.3. Integration. We develop the theory of integration of continuous func-
tions and prove the fundamental theorem of calculus.

Let R be any (bounded) region in the plane which we want to measure the
area of. We can tile the plane with squares of unit length and count the number
of such squares that are contained in the region to obtain an approximation to the
area from below. On the other hand we can count the number of squares that meet
to region to obtain an approximation to the area from above. We can repeat this
with squares of smaller size and appropriately scale the count it seems clear that
the approximant from below will increase and the approximant from above will
decrease. The least upper bound of the former is called the inner measure and the
greatest lower bound of the latter the outer measure. To obtain an area for the
region we must show that these two numbers are the same; moreover, we would like
these numbers to be independent of the placement of the grid as well as rotation
and/or shearing of the grid.
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Exercise 53. Show that the measure of any rectangle is the product of the
two sides. More generally, show that the area of a parallelogram is the product of
the height and the base.

Let f(x) be a (non-negative) continuous function for a ≤ x ≤ b. Let R be the
region bounded by the lines x = a and x = b on the left and right, by the x-axis
below and the curve y = f(x) at the top. By the previous exercise we can calculate
the measure by using rectangles instead of squares. We do this in the following
exercise.

Exercise 54. By a partition P of the interval [a, b] we mean a (finite) collection
of points a = t0 < t1 < · · · < tn = b. For any such partition we define mi

(respectively Mi) to be the minimum (respectively maximum) value of f(x) for
ti−1 ≤ x ≤ ti.

1. Show that the sum L(P, f) (respectively U(P, f)) approximate the area of
the region from below (respectively above), i. e. are sums of areas of rectan-
gles enclosed by (respectively enclosing) the region R.

L(P, f) =
n∑
i=1

mi(ti − ti−1)

U(P, f) =
n∑
i=1

Mi(ti − ti−1)

2. If P ′ is a finer partition than P (i. e. each point of P is also a point of P ′)
then show that

L(P, f) ≤ L(P ′, f) ≤ U(P ′, f) ≤ U(P, f)

3. Let Pn denote the partition of [a, b] into n equal parts. Show that

sup{L(P, f)|P a partition } ≥ sup{L(Pn, f)}

Similarly for the infimum of the U(P, f),

inf{U(P, f)|P a partition } ≤ inf{U(Pn, f)}

4. Let i = i(P, f) be such that the difference Mi−mi is maximum. Then show
that

U(P, f)− L(P, f) ≤ (Mi −mi)(b− a)

Let x(P, f) denote the mid point of the interval [ii−1, ti] for this i.
5. Let c be any point of the interval [a, b]. For any positive ε, show that there is

a δ > 0 so that the difference between the maximum and minimum values of
f(x) on the interval [c− δ, c+ δ] is less than ε/(b− a). (Hint: use continuity
of f at c).

6. The sequence {xn = x(Pn, f)} has a convergent subsequence {yk = xnk},
with limit point c. Show that there is a k0 so that if k ≥ k0 and i = i(Pnk , f)
then the entire sub-interval [ti−1, ti] of the partition Pnk is contained in
[c− δ, c+ δ].

7. Deduce that sup{L(Pnk , f)} = inf{U(Pnk , f)}.
8. Conclude that the inner and outer measure of the region R coincide.
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This show that the area of the region R is well-defined. It is denoted by
∫ b
a
f

to denote its depends on a, b and f (we will justify the use of the
∫

symbol below.
First of all note that

Exercise 55. Let a < c < b and f(x) and g(x) be (positive) functions that
are continuous in the interval [a, b]; let d > 0 be any positive constant. Then we
have ∫ c

a

f +
∫ b

c

f =
∫ b

a

f

and ∫ b

a

(d · f + g) = d ·
∫ b

a

f +
∫ b

a

g

Due to this we are justified in extending the definition as follows. If f(x) is
continuous in the interval [a, b] and c > d are points in this interval we define∫ d
c
f := −

∫ c
d
f . Moreover, if f is not everywhere positive we define

f+(x) = max{f(x, ), 0} = (f(x) + |f(x)|)/2
and

f−(x) = max{−f(x, ), 0} = (−f(x) + |f(x)|)/2
Then clearly f± are positive functions and f = f+−f−. We then define the integral
of f by the formula

∫ b
a
f :=

∫ b
a
f+ −

∫ b
a
f−. This definition too is justified by the

additive property given above.
Now if f is continuous on an interval [a, b] where its minimum value is m and

its maximum value is M it is clear that

m(d− c) ≤
∫ d

c

f ≤M(d− c)

Exercise 56. Let g(x) =
∫ x
a
f , then g is a differentiable function for all points

x so that a < x < b and its derivative is f . (Hint: Apply the addition rule and use
continuity of f at x)

This justifies the use of the
∫

symbol. We have shown how to analytically
compute the function which we formally defined above. In addition we have a way
of constructing a function which is differentiable and its derivative is continuous—a
problem that was raised in the section on continuous and differentiable functions.

7. Curves

Now that we have a basic understanding of differentiability of functions we can
begin the study of plane curves which can be defined parametrically or as the locus
of vanishing of a function of two variables. At the very least we need the function to
be (piecewise) differentiable with “good” first order properties. We shall see later
that for any interesting (and æsthetic!) study we will need second derivatives as
well.

A plane curve is defined (locally) as the locus of points where a “good” function
f of two variables vanishes. In particular, let p = (a, b) be a point where f vanishes,
then we assume that f(x, y) = f1,0(x − a) + f0,1(y − b) + o(x) is continuously
differentiable at this point. The curve is said to be singular at p if both the above
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coefficients are 0; otherwise we call the curve non-singular or smooth. For a smooth
curve through p the line f1,0(x− a) + f0,1(y − b) = 0 is called the tangent line. It
is the “best” linear approximation to the curve in an obvious way:

Exercise 57. Consider the natural parametrisation of the line α(x−a)+β(y−
b) = 0. The restriction of the function f to this line can then be thought of as a
function of one variable. Show that this function vanishes to order 2 if and only if
the line is the one above or the curve f = 0 is singular at the point p = (a, b).

In what follows we restrict our attention to smooth curves. Singular curves are
very interesting and are studied extensively in algebraic geometry.

A different way of representing curves is to think of a curve as a “moving point”.
A curve can be given in parametric form by writing a pair of functions (x(t), y(t))
so that as t varies we will trace out a curve. As before we will insist on the two
functions being continuously differentiable. We say that our curve is non-singular
at “time” t = t0 we need at least of the pair (x′(t0), y′(t0)) to be non-zero; otherwise
we call the curve singular.

Exercise 58. Consider the function of t given by substituting the above pair
of functions in the linear form l(x, y) = αx + βy + γ. Show that this function
vanishes to order 2 at t = t0 if and only if the curve is singular or the form l(x, y)
is the tangent form y′(t0)(x− x(t0))− x′(t0)(y − y(t0)).

We need to have some way of going from the parametric form of a curve to
the equation and vice verse. For the first problem, let us assume (without loss of
generality) that x′(t0) 6= 0. Then, by the inverse function theorem, we have g(x)
so that g(x(t)) = t, so that we can re-parametrise the curve to get (x, y(g(x)). The
curve is the (locally) given by the equation y − h(x) = 0 where h(x) = y(g(x).

To go from the equation to the parametric form we need to show that lines
parallel to a line which is not tangent to the curve will meet the curve in exactly
one point near the given point. This done through the implicit function theorem.
(Note to author: Exercises to be added here).

One of the advantanges of working with “orders” of vanishing is that make
these theorems “explicit” if we only need our equations to be satisfied upto terms
of some order. For example, we say that (x(t), y(t)) is a parametrisation at t = t0
upto order r of the curve f(x(t), y(t)) = o((t− t0)r). Similarly, two curves, f and g
are said to osculate upto order r if f −g = o(xr). In particular, any curve osculates
upto order 2 with a conic; thus it is possible to write a parametrisation upto order
two quite explicitly.

Finally, there is one distinguished parametrisatisation. Let (x(t), y(t)) be a
curve. Thinking of this as a moving point we have not only a tangent line but a
tangent vector (called the velocity vector) (x′(t), y′(t)). It is thus natural to define
the speed of the curve as length of this vector. We can ask for a constant speed
(or more accurately constant energy) parametrisation. In other words, can we find
t = u(s) so that

(x′(t)2 + y′(t)2)|t=u(s)u
′(s)2 = constant

Exercise 59. Use the inverse function theorem to show that the function
s(t) =

√
x′(t)2 + y′(t)2 has an inverse. Show that this inverse function satisfies

the above equation.
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We will see that such a parametrisation called parametrisation by arc-length
plays an important role in geometry. Meanwhile,

Exercise 60. Show that to obtain such a parametrisation for the circle, we
need to solve the equation

u′(t)2 1
(1 + t2)2

= 1

(Hint: Use the following parametrisation.)

(x(t), y(t)) =
(

2t
1 + t2

,
1− t2

1 + t2

)
We will study the solution of this and related equations in the next section.

8. Elementary functions

We are now in a position to introduce many interesting functions. In particular,
we define and obtain properties of the exponential and trigonometric functions.

Warning As a consequence of integration theory it is clear that there are more
functions that can be integrated than those that can be differentiated. This runs
contrary to the feeling one gets in high school calculus due to the requirement there
of expressing all integrals as a “formula” in terms of elementary functions.

Recall, that the rational functions that could not be integrated in terms of
rational functions were of the form 1/(x− b) or (ax+ b)/((x− c)+d2). The former
is a continuous function when x 6= b and the latter is continuous for all x. Thus we
study the two functions

A(x) =
∫ x

1

dt

t
and B(x) =

∫ x

0

dt

1 + t2

The function A(x) is called the logarithm denoted by log(x) and the function B(x)
is the inverse of the tangent function denoted by tan−1(x) or arctan(x).

Exercise 61. Show that the function A(x) is monotonic and goes to infinity
as x goes to infinity.

In particular, it follows that A has an inverse. This function is called the
exponential function and denoted by exp(x). We can define the number e as exp(1);
it is called Napier’s natural base for the logarithm.

Exercise 62. Show that e is between 2 and 4.

Now the fundamental property of the logarithm is

Exercise 63. Show that A(x + y) = A(x) + A(y). Consequently we obtain
exp(xy) = exp(x) exp(y).

This property and the monotonicity of exp characterise it.

Exercise 64. Let f(x) be a monotonic function so that f(xy) = f(x)f(y) and
f(x) = a. Show that f(x) = exp(x log(a)).

Finally, we can define the hyperbolic functions as usual, cosh(x) = 1/2(exp(x)+
exp(−x)) and so on.

We noe study the functions related with the function B.
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Exercise 65. Show that the function B(x) is monotonic and remains bounded
as x goes to infinity.

The least upper bound of the numbers 2B(x) is denoted by π. We can thus
define the function tan(x) on the range (−π/2, π/2) as the inverse of B.

Exercise 66. Show that an arclength parametrisation of the unit circle x2 +
y2 = 1 is given by t 7→ (sin(t), cos(t)) where we define these functions by the
formulae

sin(x) =
2 tan(x/2)

1 + tan(x/2)2

cos(x) =
1− tan(x/2)2

1 + tan(x/2)2

Note that it follows that the perimeter of the circle x2 + y2 = 1 is 2π.

It is thus natural to extend these functions periodically for all t. We can define
a multiplication on the unit circle by

(x1, y1) � (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

Exercise 67. Show that the arclength parametrisation gives a group homo-
morphism from the additive group of real numbers to the circle.

This exercise provides the link between the trigonometric and exponential func-
tion which is expressed by the formula

exp(
√
−1x) = cos(x) +

√
−1 sin(x)

which the reader can try to prove!
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