1. FOUNDATIONS OF GEOMETRY

Euclidean Geometry is the attempt to build geometry out of the rules
of logic combined with some “evident truths” or axioms. The axioms of
Euclidean Geometry were not correctly written down by Euclid, though no
doubt, he did his best. There are now a number of different ways of giving
the formal basis for the same geometry. These are

1. The “High School Geometry” text book approach.

2. Hilbert’s “Foundations of Geometry” approach.

3. Through Projective Geometry as in Coxeters’ “Non-Euclidean Geom-
etry”.

4. Trough the study of the Euclidean group as done by Sophus Lie.

We shall examine the middle two approaches in the following text. The first
method which was learned in school should now be forgotten since we are
looking at (to paraphrase Klein) “elementary mathematics from an advanced
standpoint”.

The method that (to my mind) comes closest to the original approach is
that of Hilbert’s Foundations of Geometry. Unlike the “High School Geome-
try” text books, this makes no reference to the “Ruler Placement Postulate”
or a “Protractor Placement Postulate”, both of which are anti-thetical to a
purely geometric approach. The arithmetic aspects of geometry should grow
out of it rather than be imposed from outside. Another difference is that
the notion of a line is not as a set of points in Euclid’s approach; points,
lines and planes are distinct notions in Hilbert’s approach too.

Without much more ado then let us examine Hilbert’s axioms for Eu-
clidean geometry. The fundamental notions are points (denoted by A, B,
C, ...), lines (denoted by a, b, ¢, ...) and planes (denoted by «, 8, 7, ...).
The mutual relations between these are those of Incidence (“contains” or
“lies on”), Order (“is between”) and Congruence. The axioms characterise
the “evident” or fundamental properties of these relations. We divide the
axioms into four classes, Incidence, Order, Parallels, Continuity, Congru-
ence.

1.1. The Axioms of Incidence. The following axioms set out the basic
incidence relations between lines, points and planes. They also characterise
the concept of “dimension” that we associate with these notions.

1. Incidence between points and lines:
(a) There are at least two distinct points.
(b) There is one and only one line that contains two distinct points.
(c) Every line contains at least two distinct points.
2. Incidence between points and planes:
(a) There are three points that do not all lie on the same line.
(b) For any three points that do not lie on the same line there is a one
and only one plane that contains them.
(c) Any plane contains at least three points.
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3. Incidence between lines and planes:
(a) If a line lies on a plane then every point contained in the line lies
on that plane.
(b) If a line contains two points which lie on a plane then the line lies
on the plane.
4. Dimensionality of space:
(a) If two planes both contain a point then they also contain a line.
(b) There are at least four points that do not all lie on the same plane.

The first four axioms (which do not refer to planes) are called the plane
geometry axioms, while the remaining are the space axioms. Out of the
various Theorems that can be proved we note

Theorem 1. Given a line and a point not on it there is one and only one
plane that contains the line and the point.

Theorem 2. Given a pair of lines which meet in a point there is one and
only one plane that contains the lines.

Theorem 3. Given four points that do not all lie on a plane, there is no
line containing three of these points.

Exercise 1. There is a “geometry” consisting of 4 points, 6 lines and 4
planes that satisfies these axioms.

Exercise 2. Which of the above axioms can be omitted? For those that
are necessary construct a “geometry” that satisfies the chosen axiom and
defies the others.

1.2. Axioms of Order. These axioms were almost ignored by Fuclid ex-
cept the second one below. Their importance was noticed by M. Pasch who
saw how they were implicitly being used in many proofs. This is one prob-
lem with “evident truths”; we often forget to state some of the axioms and
then the geometry is incomplete without them. The following axioms make
clear the notion of a point lying between two other points.

1. When B is between A and C then, A, B and C are distinct points
lying on a line and B is between C' and A.

2. Given a pair of points A and B there is a point C' so that B is between

A and C.

. If B lies between A and C then A does not lie between B and C.

4. Let A, B and C be three points on a plane « and a be a line on « that
does not contain any one of these points. If there is a point D on a
that is between A and B then either a contains a point between A and
C or a contains a point between B and C.
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The Line [ contains a point on one of the other two sides

The first three axioms allow us to introduce the notion of a half-line or ray.
Given a pair of points A and B the half ray starting at B and pointing away
from A consists of all points C so that B is between A and C. Similarly, the
last axiom allows us to introduce the notion of a half plane. Given a point
A and a line a the half-plane bounded by a and opposite to A consist of all
points B so that a contains a point lying between A and B.

In spite of the axioms of order being ignored for so many hundreds of years
they are so important that one can entirely replace the axioms of incidence
by giving an extended set of axioms of order. Think of it this way. If a
straight line is to be the shortest path from a point to another then we must
at least be able to say what are the points “on the way” or in-between.

The following theorems can be deduced from the axioms of Incidence and
Order.

Theorem 4. Given any two point A and B there is a point C that lies
between A and B.

Theorem 5. Given three points A, B and C that lie one a line exactly one
point that lies between the other two.
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Theorem 6. Given four points on a line they can be labelled A, B, C' and
D so that B is between A and C and between A and D and C is between B
and D and between A and D.

Theorem 7. Given any finite set of points on a line they can be labelled
Ay, Ay, ..., A, so that the points are in that order.

An important theorem that can be deduced from the order axioms was
first discovered by G. Desargues:

Theorem 8. Given points A, B, C, A', B' and C' so that the lines AA’,
BB' and CC' all pass through a point O. Further, let AB and A'B' meet
in a point C", AC and A'C’' meet in a point B", BC and B'C' meet in a
point A" ; moreover, let us assume that the 10 points considered are distinct.
Then the points A", B" and C" all lie on a line.

Proof. In case the plane « containing the points A, B and C does not contain
all of the points A’, B" and C’ then the line containing the points A”, B”
and C” is just the line of intersection of o with the plane o/ determined
by A’, B" and C'. Thus, the theorem needs only to be proved under the
assumption that all the points lie in a plane. In this case we shall show how
to construct A", B" and C" that do not lie in the plane and so that the
points A, B, C, A", B" and C" also satisfy the hypothesis of the theorem.
Moreover, A" B" and C" are collinear and so on cyclically. Thus, the
planar version will then follow from the non-planar version.



The triangles ABC and A'B'C’ lie in different planes.

In the remaining cases we examine all the possibilities for between-ness for
the triples (A, A’, 0), (B, B',0) and (C,C’,0O). By interchanging the ' and
permuting the letters (A, B,C) we can reduce to the following two cases.
1. A does not lie between A’ and O, B does not lie between B’ and O, C
does not lie between C’ and O.

2. A’ lies between A and O, B’ does not lie between B and O, C' does
not lie between C' and O.
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Lifting A’B'C’ in the first case.

Examining the first case, let O’ be a point not in the plane of A, B and
C. Let A" be a point between A’ and O'. The line joining A and A" then
must contain a point O” lying between O and O’ since its intersection with
the line joining A’ and O is A which does not lie between these points by
hypothesis. Now the line joining O” and B contains a point O” between O
and O’ and thus must contain a point B"” between O’ and B’ since the point
B of intersection of this line with the line joining B’ and O is not between
these two points. Similarly, we obtain C"” lying on the line joining C' and
0" and lying between O’ and C'.
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Lifting A’B’C’ in the second case.

N/

In the second case we choose a point O” which does not line in the plane of
A, B and C. Let A" be a point so that O” lies between A and A"”. Now
the line joining A’ and A" contains the point A’ which lies between A and
O; moreover its intersection with the line joining A and O" is A" which
does not lie between these points. Thus the there is a point O’ on the line
joining A" and A" which lies between O” and O'. Now, consider the line
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joining O’ and B’ and the triangle of points O”, B and O. As before we find
a point B"" which lies between B and O” and on the line joining O' and B'.
Similarly, we find C".

In both these cases the line joining A" and B" meets the plane o within
the intersection of the plane determined by A’, B’ and O' and the plane «;
this is the line joining A’ and B’. Similarly, the intersection of the line joining
A" and B" with « lies within the intersection of the plane determined by
A, B and O" with the plane «; this is the line joining A and B. In other
words, the line joining A” and B"' contains the point C”. We prove the
other containments cyclically. O

This theorem and the ideas behind its proof allow us to make constructions
like:

Exercise 3. Given a pair of non-parallel lines on a piece of paper (in a
bounded region of a plane) and a point not on these lines; construct a line
through this point that passes through the point of intersection of the two
lines (which may not be within the sheet of paper!).




The line joining A” and B” passes through the intersection of / and m.

Another aspect of Desargues’ theorem is that it’s proof makes use of the
non-planar axioms of incidence. We shall see that

Theorem 9. If we have a plane which satisfies all the planar azioms of
Incidence and the azioms of order, then it can be embedded in a geometry
that satisfies the axioms of space if and only if Desargues’ theorem is valid
in this plane.

1.3. Axiom of Parallels. The axiom in this section caused the most con-
troversy and confusion of all. The axioms of parallels (which is also an
incidence axiom) is
Axiom of Parallels: Given a line and a point outside it there is exactly
one line through the given point which lies in the plane of the given
line and point so that the two lines do not meet.

Note that, while asserting that there is a line through the given point that
doesn’t meet the given line, it also says there is only one such line. In other
words, it also asserts that all the “other” lines co-planar with the given line
meet that line. This motivates the introduction of the following (stronger
and stranger) version of the Axiom of Parallels:

Projective Axiom of Parallels: Any pair of lines that lie in the same
plane meet.

The idea behind this axiom is that even (apparently) parallel lines appear
to meet at the horizon. We can demonstrate that this axiom is consistent
with the axioms of Incidence by means of Linear Algebra as in the examples
below.

1.4. Models. One way of checking the consistency of our system of axioms
is to construct “models” for which all the axioms are verified. Of course,
these verifications again use results from some other area of mathematics and
the axioms of that would also have to be verified to be consistent and so on.
This is the idea behind the impossibility of verifying consistency. Leaving
philosophical studies behind let us examine “three dimensional projective
geometry over a (skew-)field”.

Exercise 4. Let K be a skew-field (i.e. K has addition, subtraction, mul-
tiplication and division but multiplication does not necessarily commute).
Points, lines and planes of P3(K) are given by (left) linear subspaces of K*
of rank 1, 2 and 3 respectively. The incidence relations are just the inclu-
sions of subspaces. Show that this gives a system that satisfies the above
Incidence axioms and the projective axiom of parallels.

In fact, this even leads to another system which satisfies the usual axiom
of parallels.

Exercise 5. Let A3(K) be the collection of all points, lines and planes in
P3(K) that are not contained in a fixed plane « (called the plane “at the
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horizon”). Show that this geometry satisfies all the axioms of incidence and
the “usual” axiom of parallels.

The notion of between-ness can also be brought in with some more alge-
bra.

Definition 1. A positivity on K is a subset P so that:

1. P+PCPand P-P CP.
2. PU{0} U (—P) = K and this is a disjoint union.

This conforms to the concept of positive numbers. Using this we can
define the cone generated by a collection of vectors in K* as the collection
of all non-negative linear combinations of the vectors.

Exercise 6. Fix a three dimensional linear subspace V of K* (in other
words a plane in P3(K)) and a vector v not in V. There is a unique linear
functional on K* which has kernel V and takes the value 1 on v. We say
a vector w is positive if f(w) lies in P. Every linear subspace in K* which
does not line in V is then determined by its positive half.

Exercise 7. We say that a point A of A3(K) lies between points B and
C if the positive half of the linear subspace in K* corresponding to A is a
positive linear combination of of the positive halves of the linear subspaces
corresponding to B and C respectively. Check that the axioms of order are
satisfied on A3(K) with this notion of between-ness.

We have thus constructed a geometry satisfying all our axioms by making
use of some algebra. Other geometries satisfying these axioms can also be
constructed.

Definition 2. A collection R of points in A3(K) is said to be convez if,
given A and B are points in R and C in A3(K) is between A and B, then
C is also in R.

Definition 3. A convex collection R of points is said to be open if for any
point A in R and B in A3(K), there is a point C lying between A and B in
A3(K) so that C is also in R.

Exercise 8. Let R be an open convex collection of points in A3(K). We
denote by [R] the geometry for which points are the points of R, lines and
planes of [R] are the lines and planes of A3(K) which meet R. The relations
of incidence and order are inherited from A%(K). Check that this geometry
satisfies the axioms of incidence and order.

A very important result (a sketch of proof is outlined in the next section)
is that every geometry satisfying the axioms of incidence and order is of the
type [R] for an open convex set R in A%(K) for a suitable ordered field K.

Hence, and this is important to note, the fact that arithmetic/algebraic
problems arise in geometry does not immediately have anything to do with
measurement! In particular, the relation between distance and coordi-
nates can be much more complicated than that which will emerge from
the Pythagoras theorem.
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1.5. Putting co-ordinates. First of all we expand our geometry and in-
troduce ideal points, lines and planes. This can be considered as the process
of re-constructing P?(K) given [R].

The definition of an ideal point (Point) is motivated by the fact that a
pair of intersecting lines is lies in a plane.

Definition 4. A Point is a collection of lines so that any pair of lines in this
collection is co-planar. Moreover, there is at least one line in this collection
through any given point.

The relation of these properties to Desargues’ theorem is given by.

Theorem 10. Let a, b, ¢ be any three lines in the collection of lines deter-
mining a Point. There are points A, A" on a, B, B' on b and C, C' on
¢ which give a Desarguian configuration. That is to say, the lines AB and
A'B' intersect in a point C", the lines AC and A'C’ intersect in a point B"
and the lines CB and C'B’ intersect in a point A", so that the point A", B"
and C" lie on a line.

Similar ideas can be used to show that there are Points.
Exercise 9. Let | and m be lines and consider the collection of all lines &
such that either one of the following holds:

1. k is not co-planar with [ and m but is co-planar with each of [ and m
separately.

2. There is a line j of the above type so that j is co-planar with each of
k, 1, m.

Check that this collection gives a Point.
The notion of collinearity for Points can be defined as follows

Definition 5. The Points A, B and C is said to be collinear if for any point
p there are lines a, b and ¢ in the collections A, B and C respectively so
that a, b and c are coplanar.

With this definition we can define an ideal line

Definition 6. A Line is a collection of Points so that any three are collinear;
moreover, the collection contains at least two Points.

We easily check
Exercise 10. There is a unique Line containing a pair of Points.
Similarly, we can define an ideal plane

Definition 7. A Plane is a collection of Points and Lines so that there is at
least one Point and one Line not containing it in the collection. If a Line is
in the collection then so is every Point contained in the Line. If a Line and
a Point not on it are contained in the collection so is every Line containing
the Point and a Point of the Line. Finally, there is at least one Point not in
the collection.
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The main result is then

Theorem 11. If we start with a geometry satisfying the axioms of incidence
and order, then the Points, Lines and Planes as defined above satisfy the
azioms of incidence and the projective axiom of parallels.

Since each point, line and plane in the original geometry determines a
Point, Line and Plane respectively, we see that we have “embedded” our
geometry in a geometry satisfying the axioms of incidence and the projec-
tive axiom of parallels. Such a geometry is called an axiomatic projective
geometry. By replacing the use of Pasch axiom by the use of the projective
axiom of parallels one can also prove Desargues’ theorem for this geometry.
We wish to co-ordinatise this geometry.

The addition and multiplication operations can be “constructed” in a
manner similar to that in Euclidean geometry.

Definition 8. Let O and Z be a pair of Points and A, B be Points on the
Line j containing O and Z. Let k be any Line containing Z and not O and
P be a point of k other than Z. Let @) be a Point on the Line [ joining O
and P other than these two. The Line m joining Z and ) meets the Line
n joining A and P in a Point C. Let D be the Point of intersection of the
Line o joining B and . Finally F is the Point of intersection of the line p
joining C' and D with the line j. We then say that E is the “sum” of the
points A and B with respect to O and Z.

\D

0 A B p

The sum of A and B with respect to O and Z is F.
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Exercise 11. Show that this operation is well-defined.

Definition 9. Let O, I and Z be distinct collinear Points and A, B be
Points on the Line j containing O and Z. Let C be a Point not on j. Let k
be the Line joining C with Z and [ be the Line joining C with O. Let J be
a Point on [ different from C' and O. The Line m joining I and J meets [ in
a point K. Let C be the Point of intersection of the Line n joining A and
K. Let D be the Point of intersection of the Line joining B and J. Finally,
let E be the Point on j that lies on the line o that joins C and D. We say
that E us the “product” of the points A and B with respect to O, I and Z.

D

o  f ho® 5

The product of A and B with respect to O, I and Z is FE.
Exercise 12. Show that this operation is well-defined.
The main result is to use these operations to show that

Theorem 12. Let O, I and Z be distinct Points on a Line j. The opera-
tions defined above make the collection of all Points on j other than Z into
a (skew-) field K.

Finally, one produces a one-to-one correspondence

Theorem 13. There is a one-to-one correspondence between the (aziomatic)
projective geometry and the geometry P3(K).
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The original geometry is then that of a convex set R in A3(K).

1.6. Suggested Reading. Most “advanced” books on Projective Geome-
try or on Non-Euclidean Geometry will have a good portion of this material.
Here are some books that I have found useful.

1. D. Hilbert, Foundations of Geometry.

2. H. S. M. Coxeter, Non-Euclidean Geometry.

3. Seidenberg, Projective Geometry.



