1. COORDINATE GEOMETRY

The “ab initio” approach to geometry led us in a natural way to coordinate
geometry. Thus algebra (and arithmetic) play a very important role in
geometry. Algebra is very useful since we can discuss curves and other
objects with much greater ease using coordinates. This is not to say that
everything in geometry cannot be discussed without bringing in algebra.
One can discuss “loci”; each locus is thought of as a geometric figure “traced”
by a point moving according to some specific geometric constraint. We will
discuss how conics can be described in this way. Though this description is
beautiful, it also shows how limited we are if we ignore algebraic techniques.
Thus we shall bring in some algebra to study curves and then surfaces.
In particular, we shall discuss whether curves are really curved and the
curvature of a surfaces is superficial!

1.1. Conics. Conic sections are usually introduced as the first curves (as
opposed to lines) and are given as the locus of points satisfying an equation
of the form

az® + 2bzy + cy? +2dz +2ey + f =0

We have also studied that the behaviour of this equation is controlled by
the following determinants

D=det|b c e ;dzdet(a Ié)

If D = 0 then the locus is a pair of lines which are parallel (and could
coincide) if d = 0. We get curves if D # 0 which are the hyperbola, parabola
and ellipse (or circle) if d is negative, zero or positive (the circle corresponds
to the latter when a = ¢). Since we have defined addition and multiplication
in geometric terms it should not amaze us to see that the above definition
can be made without reference to an algebraic equation.
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A conic is the locus of intersection points of pairs of lines that correspond
under a projectivity between to pencils

In order to understand this statement let us a fix a projective plane and
work within it. The collection of all lines through a fixed point O are in
natural 1-1 correspondence with the points on a line [ not containing O; any
point B on [ determines a unique line b joining O and B and conversely, any
line b through O meets [ in exactly one point B. The locus of lines through
a fixed point is called a pencil.
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The pencil of lines through a point O is in 1-1 correspondence with the points of [

If [ and m are two lines, neither containing a point O, then we have natural
correspondence given above between the points of each line and the points
of the pencil through O. This sets up a 1-1 correspondence between the two
lines. Explicitly, for each point A of [ let a be the line joining O and A and
let B be the point of m that lies on a. This correspondence is called the
perspectivity between the points of [ and m with center O.

Similarly, if a pair of points A and B are such that neither lies on a line
[, then there is a natural 1-1 correspondence between the pencils through
A and B, since both the pencils have a 1-1 correspondence with the points
of [. Explicitly, if p is a line containing A which meets [ in P, we consider
the line ¢ joining B with P. This correspondence is called the perspectivity
between the pencils through A and B with axis [.



Central perspectivity between lines

In both case a projective correspondence or projectivity is defined as a
composition of perspectivities. Thus, the definition of a conic says, take a
pair of points A and B and a projectivity m between the pencils of lines
through A and B. Let C be the locus of points of the form [ N 7 (l) where [
is a line through A and w(l) the corresponding line through B, then C is a
conic.

In order to understand projectivities better we note the following

Exercise 1. Given three points O, I and Z one a line [, and three points
O', I') Z' on a line m. Each point A other than the given points on [
corresponds to an element A(A) of K — {0,1} where K is the underlying
field. Similarly, a point B of m other than the given points corresponds to
p(B) in K — {0,1}. A perspectivity (and more generally a projectivity) m

.

Axial perspectis
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can be written as p(m(A)) = (a + bA\(A))/(c + dA(A)) where a, b, ¢ and d
are in K and ad — bc # 0.

Central perspectivity from A and then B gives a general projectivity

The study of conics in projective geometry is a fascinating one but we
leave it here with a pointer to the suggested readings on projective geom-
etry. At the same time we note that it would be rather difficult to study
more complicated curves such as the locus of points satisfying 23 + 9% = 1,
using only the incidences between points and lines and not algebra; this is
possible in principle since the addition and multiplication operations have
been defined in terms of the incidence relations. From now on we will use
all the familiar notions from algebra and deal with coordinate geometry.

1.2. Curves. To emphasise the obvious, the fundamental difference be-
tween lines and curves is that the latter are “curved”. How do we quantify
this “curvy-curvy”-ness or curvature? We shall give a definition and exam-
ine some properties.

Let C denote the curve given as the locus of points (z,y) in the coordinate
plane which satisfy the equation f(z,y) = 0. (Here and elsewhere we will
restrict ourselves to polynomial functions since these are the natural outcome



6

of the operations so far defined geometrically). Let p = (z¢,y) be a point
on the curve. For any line [ (for example given by the equation a(x —
xo) = b(y — yo)) that contains this point we can define the order of contact
between | and C' at p as follows. We substitute the parametric solution
(z,y) = (bt + o, at + yo) of the line in the equation of C to obtain F(t) =
f(bt+xzg,at+yo). The order of contact r(I, C, p) is then the “largest” power
of t that divides F'(t). If F(¢) = 0 then the curve contains the line [ and we
define r(l,C,p) = oo otherwise this order is bounded above by the degree
of F' which is a polynomial in ¢. Since t = 0 corresponds to the point p we
always have r(I,C,p) > 1.

Definition 1. A line [ with a higher order of contact with C at p than any
other line is called an osculating line or tangent to C at p.

Exercise 2. Either r(I,C,p) > 2 for all [ through p or there is a unique line
[ through p for which (I, C,p) > 2. In the former case we say C' is singular
at p and in the latter case we say that C is non-singular or smooth at p.

Smooth curve and its tangent line Singular curve and its tangent

Smooth and Singular Curves
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In what follows we will concentrate our attention on non-singular curves.
The singular case is very interesting but beyond the scope of our current
discussion.

In order to motivate one definition of curvature, we first note that a circle
is clearly curved. The curvature of a circle should be inversely proportional
to the radius since the family of circles touching a line at a given point
approach the line as the radius increases. Thus we could define

Definition 2. Given a point on a curve the osculating circle is the circle
that has the highest order of contact with the curve at the given point. The
curvature of the curve at the given point is the inverse of the radius of this
circle.

t: The tangent vector n: The normal vector b:The bi-normal vect

Of course, we must first define the order of contact of a circle and a curve
or more generally of two curves, then we must show that a unique circle as
defined exists. Note also that once we use circles in a definition we can only
make changes of coordinates with preserve circles and their radii; that is,
rotations, reflections and translations. In other words, we must fix a notion
of distance for curvature to make sense.
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Exercise 3. Show that (u,v) — (z + y3,7) is a one-to-one and onto cor-
respondence between the (u,v)-plane and the (z,y)-plane. What curves in
the (u,v)-plane correspond to lines in the (x,y)-plane? Are these curved?
Can we take these to be lines in a geometry?

Curvilinear coordinates
To mimic the definition of the order (I, C, p) of contact of a line and a curve
in order to define r(C, D, p) we need to find a parametric solution of at least
one of the curves. Such parametrisations are impossible in general. Instead,
we have

Definition 3. We say that (z(t),y(t)) is a parametric solution of f(x,y) of
order v if t" divides f(z(t), z(t))-

If C and D are curves defined by f(z,y) = 0 and g(z,y) = 0 and p =
(z0,Yo) is a point on both the curves then we say that C' and D have order
of contact (at least) r is there is a common parametric solution (z(t),y(t))
or order r for both curves so that (z(0),y(0)) = (zo,y0)- We can define
r(C,D,p) as the supremum of such r.

Exercise 4. Show that r(C,D,p) > 2 for smooth curves C and D if and
only if the tangent lines at p to C' and D respectively coincide.

In particular, it is always possible to find a circle D which has order of
contact 2 at a given point p = (z9,yg) on C. In order to find a circle with
order of contact 3 or more we need to find conditions so that the following



equations have a common solution
2| (zo+ 2t + z2t® — a)? + (yo + yit + yot® — b)? — 12
| flzo+ mit + zot?, yo + Y1t + yot®)

We collect coefficients of 1, ¢ and t? to obtain the following system of equa-
tions

(o —a)® + (yo—b)* —1° =
f(zo,90) =
(xo —a)z1 + (Yo —a)y1 =
fe(mo,90)71 + fy(zo,y0)y1 =
(to —a)z2 + (yo — a)y2 + 27 + 4y =
oo (20,50)77 + 2 fay (20, %0) 151 + fyy (20, y0) ¥ +
fe(w0,90)72 + fy(zo,y0)y2 = O

Here we adopt the subscript notation g, to denote the (partial) derivative
of a polynomial g in the variable u; we note that this derivative is defined
formally (without the use of limits) and arises in the above equations due
to the binomial expansion which is the Taylor expansion for polynomials.

S O o o O

Exercise 5. A solution for the above equations exists only if
2 _ (f2 +£2)? |
(fmfg? + 2fayfafy + fuyf2)? (z0,y0)

Moreover, if we can form square roots then a solution does exist in this case.

Thus we obtain the following formula for the curvature x of a curve

(foafd + 2fayfefy + Fyyf?)
(f2 + f5)3/2 ‘(ﬂﬁo,yo)

Another way to approach curvature is by reversing Newton’s law of motion.
If a body experiences no acceleration then it must travel along a straight line
at constant speed. Thus, we can define the curvature of a curve as (the mag-
nitude of) the acceleration experienced by a body travelling along the curve
at constant speed. This definition has the advantage of being applicable to
space curves (z(t),y(t), z(t)) as well. We again have to surmount a difficulty
that it may not be easy to find (z(¢), y(t), z(t)) so that (z.(¢), y:(t), z:(t)) is of
length 1; certainly there will in general be no polynomial functions that will
do the trick. However, we note that acceleration is just (24 (0), y4(0), 2(0))
for such a curve so that it will be enough to find a parametric solution of
order 3 which has constant speed.

We now apply this method to the curve defined by f(z,y) as above. The
above considerations lead to the following pair of conditions

3 | flxo + z1t + 2ot yo + Y1t + yot?)
2| (21 + 2m0t) + (y1 + 2y0t)® — 1
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We then have to compute (x2,y2) or rather its magnitude. Now we col-
lect coefficients of powers of ¢t as before to obtain the following system of
equations

f(zo,90) = 0
Jz(zo,y0)z1 + fe(zo,v0)yr = O
faa(@0,90)2T + 2 fay (@0, Yo)z1y1 + Fyy (0, y0)y7 +
fz(z0,Y0)22 + fy(zo,yo)y2 = 0
ity =
z122 + 192 = 0

Exercise 6. Solve the above equations to obtain the magnitude p = \/z2 + y3
of the acceleration as

(foaf? + 2fuyfofy + Fyyf2)
(f%+fy2)3/2 |(930,y0)

Thus we see that the notion of curvature can indeed be recovered from
Newton’s law as the acceleration of a particle moving along the curve at
constant speed.

We now compute the curvature for any parametric curve (z(t), y(t), z(t)
at the point p corresponding to ¢t = t3. To compute curvature follow-
ing the above definitions we need to re-parametrise the above curve by
t = to + g(s) so that the parametric curve (z'(s),y'(s),2'(s)) = (z(to +
9(8)),y(to + g(s)), z(to + g(s))) is traversed at constant speed (with respect
to the parameter s). The acceleration (z!,(0),.,(0),2%,(0)) gives the cur-
vature of the curve as its magnitude.

Exercise 7. Work with a solution g(s) = g15+ gos? of order 3 to obtain an
expression for the curvature of this curve.

A useful notion is that of the directional derivative D,(g)(p) of a function
g at a point p = (zo,yo) along a direction v = (z1,y1). This is the derivative
at t = 0 of the function G(t) = g(zo + tx1,y0 + ty1); in other words
Dy (9)(p) = 2192 (%0, Y0) + y19(<0, Yo) + z19(20,%0)

We consider the function which assigns to each point of a plane curve C its
unit normal, that is

(z,y) = n(z,y) = %

Exercise 8. Show that the directional derivative Dy (n)(z,y) of n(z,y) is a
vector which is orthogonal to n(z,y).

In particular, we note that if v is a non-zero tangent vector to C at a
point (zg,yo) on C then Dy(n)(xo,yo) = a - v for some a.

Exercise 9. Show that « is the same as the curvature of C' upto sign.



11

An important aspect of the above calculations is that there is no “intrin-
sic” curvature to a curve—at least not in a local picture. Any curve can be
parametrised in such a way that distance along the curve depends linearly
on the parameter; exactly as for a line. The curvature occurs only in the
manner in which the curve is embedded in the surrounding plane (or space).
We shall see that the behaviour for surfaces is very different.

1.3. Surfaces. As in the case of curves we will begin with the study of a
surface S defined by a single equation f(z,y,z) = 0 and eventually treat
more general surfaces. If p = (xg,yo, 20) is a point on S, and a line [ through
p is given in parametric form (xg +tx1, yo + ty1, 20 + t21), then we can define
the order of contact r(l,S,p) as the highest power of ¢ which divides the
the function F(t) = f(xo + tz1,y0 + ty1, 20 + tz1). A tangent line is then
one which has the largest order of contact among all lines. The locus of all
tangent lines describes a conical surface with vertex p. In fact,

Exercise 10. Either r(I,S,p) > 2 for all lines through p or there is a plane
P so that lines | with r(l,S,p) > 2 are precisely lines lying in the plane
and passing through p. The latter case occurs if and only if the vector
(fz(p), fy(p), f2(p)) is non-zero. By a replacing the equation f = 0 by a
non-zero multiple we can ensure that the vector (fz(p), fy(p), f.(p)) is a
unit vector, which is then called the unit normal to the surface.

As in the case of curves we call the former case the singular surfaces and
the latter are called smooth or non-singular surfaces. We will restrict our
attention to smooth surfaces.



Smooth surface and its plane of tangent lines Singular surface and it

We define the linear space of tangent vectors T),(S) to S at p as the space
of all vectors v so that the parametric line p + tv is tangent to S at p.

Exercise 11. Show that the tangent space is precisely,

{v="(z1,91,21) | fo(®0,v0,20)21 + fy(z0,y0,20)y1 + f2(T0,Y0,20)21}

In other words v is tangent if and only if D,(f)(p) = 0.

The curvature of curves defined in the previous section can be formulated
as follows. We have a map from a plane curve C to the unit circle given
by sending each point to the unit tangent vector at that point (we need to
choose a “direction” along the curve but that can be done locally). As we saw
the derivative of this map is the curvature. Now the unit normal direction
is a right-angle rotation from the tangent vector, so we could equally well
have used the map which takes a point to its unit normal. The latter map
also makes sense for a surface S in 3-space; we have a natural map

(f=(p), fy(p), f2(p))
fz()? + fy(p)?2 + f.(p)?)'/?

p'—>n(p)=(
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which sends S to the (unit) sphere. Curvature should be a measure of the
derivative of this map. Let v be any vector in T},(S) or equivalently v be a
vector orthogonal to n(p).

Exercise 12. Show that D,(n)(p) is orthogonal to n(p) also. (Hint: Use
the equation n - n =1 for all p).

Thus, if v and w are linearly independent vectors in 7),(S) (and hence
form a basis of this vector space), then we have

Dy(n)(p) = av + bw and Dy, (n)(p) = cv + bw
for some constants a, b, ¢ and d.

Definition 4. We define the Gaussian curvature of S at p to be the deter-
minant ad — bc of the above linear transformation.

Exercise 13. Show that for any function f, vectors v, w and constant a we
have D(qytw)(f) = aDy(f) + Dy(f). Now show that the above definition is
independent of the choice of vectors v and w.

We can additionally justify the above definition by noting that the Gauss-
ian curvature of a plane is 0. In order to understand the Gaussian curvature
better we must first understand the notion of “straight lines” or geodesics.
To begin with let us examine curves lying on the surface. Let p = (x¢, yo, 20)
be a point of S and (z(t),y(t),z(t)) be a curve on S passing through p at
t=0.

Exercise 14. Show that the tangent vector (x(0),%:(0),2:(0)) is in the
tangent space Tp(S).

We have already seen that a curve has non-trivial curvature if the accel-
eration required to travel along it at constant speed is non-zero. Thus a
curve must be considered straight on the surface S if the projection of this
acceleration into T;(S) is zero. In other words:

Definition 5. Let (z(t),y(t),2(t)) be a parametrised curve (of some order
r > 2) on the surface S. Moreover, suppose that the speed ((z:)% + (v;)? +
(2:)?)'/? is a constant. We say that the curve is geodesic on S if the acceler-
ation at any point of the curve is a multiple of the unit normal to S at that
point.

Exercise 15. Consider a parametric solution of order 3 to the equations
fz(t),y(t),z(t)) = 0 and (z¢)® + (y:)? + (2¢)> = ¢; morover suppose that
the acceleration is a multiple of the normal to S. Show that we obtain the
equation for the acceleration vector

___ Qi)(=1y1,2)
($2,y2,22) - fa:(p)2 +fy(p)2 +fz(p)2 (fw(p)afy(P),fz(p))

where, p = (9, Y0, 20) is the “starting point”, (z1,y1, z1) is the initial tangent
vector and @y is the quadratic form given by the second derivatives of f,
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that is

Qf(a’7 b, C) = f:c:ca2 + 2fwyab + 2fzac+ fyyb2 + 2fyzbc + fzz02

The above equation can be written as

Q@ yr,2)(p)
v 200) = =L G+ ) + 1.0

2 (fw(p)a fy(p)afz(p))

Given any point (zg, yo, z0) on the surface and a tangent direction (z1,y1,21)
to S at that point, we can inductively solve this equation to obtain the terms
upto any required order and obtain the geodesic in parametric form.

Consider the quadratic form @ obtained by restricting the form Q/(f2+
fo+ £2)1/? to the tangent space Tp(S).

Theorem 1. Let Q be a quadratic form on a vector space V (over the real
numbers) there is an orthonormal basis {ei,...,ep} of V so that Q can be
written as

Quier + -+ + upey) = aru? +...ane2

In particular, we have an orthonormal basis {e1, ez} for the tangent space
T,(S) so that Q(ue; + vey) = ku? + lv2. Euler called the numbers k and !
the principal curvatures of S.

Exercise 16. Show that the Gaussian curvature of S is kl.
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The thick lines denote the geodesics of extremal curvature

Examples of different curvatures on a tube

We shall now show how one can use geodesics to compute curvature. Let
p be any point on the surface S, then for each tangent direction w in T;(S)
we can form the parametric geodesic g, (t) of some order r. Let e, ex be
a basis of T),(S) as above and w = ue; + vep. Consider the map

(u’ ’U) = p(ua U) = gp,ue1+ve2 (1)

which gives a parametric form for S upto order r. This parametric form
is called the geodesic normal form or geodesic normal co-ordinates and is
determined by the geometry of the surface (that is, by understanding the
equations of “straight lines” or geodesics on the surface).

To simplify things we take p to be the origin (by translation) and let es
to be the unit normal to S at p. We use {ei, e2,e3} as a basis in which to
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express points of space. The above map then becomes (for r = 4),
p(u,v) = (u+ A(u,v),v + B(u,v), — fracl2Q(u,v) + C(u,v))
where A, B and C are homogeneous of degree 3.

Exercise 17. By using the geodesic equation show that A = Q(u,v)Qy(u,v)/6
and B = Q(u,v)Qy(u,v)/6.

By definition of p(u,v) the lines through the origin in the (u,v) plane go
to geodesics in S. What about other lines? Consider the line [ = (ug +
su1,vo + svi) parametrised by s in the (u,v) plane. It becomes a curve
v(s) = p(uo + su1,vo + sv1) in space. The velocity vector of this curve is
vs(8) = pyu1 + pyv1 and the acceleration is

a(s) = 'Yss(s) = puuu% + 2pypu1v1 + pvv")%
We need to find the component of this accleration in the tangent plane to
S, i. e. is the space of p, and p,.

Exercise 18. Prove the following formulas valid modulo order 2 in ug and
Vo

a(s) -py = kl/3vi(vour — uov1)
a(s) -py = Kkl/3uq(vour — upvy)

One checks that p, and p, are unit vectors modulo order 2 in ug and vy.
Thus, the magnitude of the acceleration is (kl/3)(vou; — wov1) times the
length of the vector (u1,v1) along the line [ in the (u,v) plane. Thus the
curvature of the image of lines parallel to the origin in the (u,v) plane is
also related to the Gaussian curvature of S; which thus also measures the
deviation from the parallel postulate.

1.4. Manifolds. We can try to generalise the above results from two vari-
ables u, v to n variables uq, ... , u, for any positive integer n. A manifold
M in parametric form is the locus of points (in some R¥) obtained as the
image of a vector-valued function z(uy,...,u,). Moreover, to ensure that
we have n “directions of freedom” we also require the derivatives z,,, ...,
Ty, to be a linearly independent set at every point; we use Tj,(M) to denote
the linear span of these vectors which is called the tangent space to M at p.
(For those who know more, this is a local manifold and not a global one).
If (u1(t),...,un(t)) is an n-tuple of functions of one variable we obtain a
curve in M. The velocity and acceleration of this curve as a curve in R* are

V= Ty Uig+ o+ Ty, Unyg and
a = E Luju; Ui tUjt E Loy Ui 1t
irj i

The vector v is in the tangent space to M. We need to understand the
projection of acceleration into the tangent space to see whether a curve is
indeed “curved” in M or is a geodesic.
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Exercise 19. Let vy, ..., v, be linearly independent vectors. Show that
the matrix whose ij-th entry is g;; = v; - v; is a positive definite symmetric
matrix. Let h;; denote the matrix entries of its inverse. The orthogonal
projection of a vector a to the linear span of vy, ... , v, is given by Zi,j hij(a-

;) ;.-

Thus we see that the orthogonal projection of the acceleration into the
tangent space of M is given by

D rkt(@ugu; - B Wi h0) Ty + D Ui,

irjokl i
Where we will use g;; = (@y; - T4;) and h;; for the matrix entries of the
inverse of the matrix (g;;). Now we have the following equations for the
derivatives of g;;

(gij)uk = (muzUk : xuj) + (Tu, - xujuk)

We “solve” these to obtain

(xuiuj- ‘Tuk) = (1/2)((9ik)uJ' + (gjk)ui - (gij)uk)
Finally, we can put

Tije = hat(1/2)((gik)u; + (Gik)ui — (9i5)us)
k

so that the components of acceleration along z,, are given by Zi, ik Ly ki, eu e+
U, tt-

First of all we note that the I';; ; and hence the acceleration of a curve on
M can be computed one we are given the g;; as functions of u;. We no longer
need the “crutch” of the vector-valued functions z(u;). Thus, the geometry
of the manifold M is entirely described by the matrix-valued function (g;;)
with values in positive-definite matrices. This function gives the speed of
a curve (u;(t)) as ). gijuiruj¢ and the accleration is given by the formula
above.

Exercise 20. Use the geodesic normal form of the surface as given above
and compute the speed of a curve (u(t),v(t)) to be

u? + v + (kl1/3) (uvy — vuyg)?
modulo order 3 terms in u and v.

Thus the curvature can also be obtained by comparing the speed of curves
with the “usual” speed in the (u,v) plane. We shall see that this is the key
idea used by Riemann to understand curvature in many dimensions.

Secondly, we note that the equation for a curve on M with 0 accleration
can easily be solved inductively given the starting point and the velocity
at that point. In other words given (u1y,...,unp0) and (ui,1,...,up,1) we
consider a curve given by the functions u;(t) = u;0 + u;1t +.... By com-
paring the coefficients of ¢" in the equation Zi,j Lij ki puje + vk = 0, we
can inductively solve for u; 2, u; 3 and so on.
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Let p be a fixed point on M and choose a collection of vectors eq, ...
en so that (g4;) becomes the identity matrix with respect to this basis. For
each n-tuple (v1,...,v,) we consider the geodesic 7y, ...s,)(t) (upto some
order in t) obtained as above, starting at p and proceeding along , v;e;.
One easily sees that the functions

U,’(Ul, cee 7Un) = ui(ﬂ)’(vl,...,vn)(l))

give another parametric form (in the variables vy, ... ,u,) for the manfiold
M (upto some order r). This form is called the geodesic normal form for
M. We can re-express any function on M in terms of the new variables by
substitution. Similarly, we can compute the speed of curves (v (%), ..., v, (%)
in terms of a new matrix (G;;) which can easily be computed in terms of
the g;; and the expression of u’s as functions of v’s.

It is clear that this special parametric form should reflect the geometry
of M. In fact, Riemman proved

Theorem 2. If the manifold M is expressed in the variables (v1,...vy) in
geodesic normal form, and the expression for spped of a curve takes the form

2
Z Gij'Uz',t'Uj,t = Z Vgt Z Cij,kl(’Uz”Uj,t — Uj’Uz',t)(kaz,t — UlUk,t)
j % 1<j,k<l
modulo order 8 terms in the variables v;.

The second term can be thought of as a quadratic form ), j k<t CijokiZij 2kl
in a new set of variables z;;. By diagonalising this quadratic form as earlier
we obtain n(n — 1)/2 “eigenvalues” which are called the principal sectional
curvatures of M in analogy with the two dimensional case given in the ex-
ercise above. Many interesting properties of curvature have been developed
over the years. Riemann himself showed that the curvature is 0 at all points
of M if and only if M is Euclidean. He also claimed that the functions on M
given by the principal sectional curvatures uniquely determine the geometry
of M. This claim has only been proved partially.

1.5. Suggested Reading. Most “advanced” books on Differential Geome-
try or on Advanced Calculus will have a good portion of this material. Here
are some books that I have found useful.

1. Hicks, Differential Geometry.
2. Spivak, Calculus on Manifolds.



