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8. Algebraic Schemes for Cryptosystems

The above title is a kind of pun since we will discuss the geometric objects called
Algebraic Schemes which also give us algebraic schemes (in the “English” sense)
for cryptosystems. All the groups discussed so far turn out to be special cases of
certain groups that are introduced in this section.
The fundamental problem studied in arithmetic algebraic geometry is the solu-

tion of systems of algebraic equations. The notion of an Algebraic Scheme is the
essential geometric notion that incorporates this question. We then introduce the
notion of vector group schemes and the K-group of such objects. With some ad-
ditional constraints these are the groups that seem to arise in many cryptographic
contexts.
While we cannot hope to introduce all the algebraic geometry and commutative

algebra that is necessary to study these K-groups here, we give the fundamental
definitions and some important examples. We will also not give proofs as the subject
is too vast to be covered here. When we apply this theory to hyper-elliptic curves
in the next section we will be more precise.

8.1. Finite rings. We recall some basic facts about finite commutative rings with
identity (and 1 6= 0). (The adventurous reader may like to explore which parts of
this entire section can be carried over to the non-commutative case). The reader
can prove these results from first principles.

(1) In any finite ring there are finitely many ideals and in particular there are
finitely many maximal ideals. In other words such a ring is “semi-local”.

(2) Any prime ideal in a finite ring is maximal.
(3) (Analogue of Chinese Remainder Theorem). Any finite ring is a product of

finite local rings; i. e. finite rings which have only one maximal ideal.
(4) In a finite local ring every element is either a unit or nilpotent. Moreover,

a finite local ring has pn elements for some prime p and some integer n.
(5) The residue field of a finite local ring is the quotient of the ring by its

maximal ideal. This is a finite field.
(6) An element of a finite local ring is a unit if and only if its image in the

residue field is non-zero.

8.2. Functors of points. Suppose that we are given a system S of p polynomial
equations in q variables. To every finite ring A we associate the set S(A) of all
q-tuples (a1, . . . , aq) of elements of A that satisfy this system of equations. This
is an example of a functor F from finite rings to finite sets; i. e. for every ring A
we associate a finite set F (A) such that if A → B is a ring homomorphism then
we have a natural map F (A)→ F (B) so that composition of ring homomorphisms
goes to composition of set maps and the identity ring homomorphism goes to the
identity map.
Giving a system T that is “derived” from the system S by substituting the

variables by polynomial functions of another set of r variables is a natural operation
on systems of equations. The analogous notion is that of a morphism of functors
(also called a natural transformation) F → G. This is a way of giving a map
F (A) → G(A) so that for any ring homomorphism A → B we get a commutative
diagram (any element in the top left corner has the same image in the bottom right



40 KAPIL HARI PARANJAPE

corner independent of the route followed).

F (A) → G(A)
↓ ↓

F (B) → G(B)

Some simple examples of such functors are:

(1) To every finite ring we associate the empty set.
(2) To every finite ring we associate the singleton set.
(3) To every finite ring we associate the underlying set of the ring.
(4) To every finite ring we associate the group of units in the ring.
(5) To every finite ring we associate the collection of q tuples of elements of the

ring.

Each of the above is a particular case of the following more general construction. Let
R be any finitely generated ring (i. e. R is a the quotient of the ring Z[X1, . . . , Xq] of
polynomials with integer coefficients by some ideal I). We have a functor (usually
denoted by Spec(R)) which associates to the finite ring A the finite set of (unital)
ring homomorphisms Hom(R,A). This can be done by taking the rings (1) R = 0
(2) R = Z (3) R = Z[X] (4) R = Z[X,Y ]/(XY − 1) and (5) R = Z[Xr . . . , Xq].
The associated geometric objects can conceptualised as (1) empty (2) point (3) line
(4) hyperbola (5) q-dimensional affine space Aq (since that is what one will get
when A is a field). A functor of the form Spec(R) for a finitely generated ring R is
called an affine scheme. If R is a quotient of the polynomial ring Z[X1, . . . , Xq] by
the ideal generated by polynomials (f1(X1, . . . , Xq), . . . , fp(X1, . . . , Xq)), then it is
clear that Spec(R)(A) is naturally identified with the subset of q-tuples of elements
of A which satisfy the system of equations given by the fi.
For those who have studied affine schemes earlier in a slightly different way we

offer the following:

Lemma 17. Let R→ S be a homomorphism of finitely generated rings so that for
every finite ring A the induced map Hom(S,A)→ Hom(R,A) is a bijection. Then
this homomorphism is an isomorphism.

A slightly different example (but one which is fundamental) is the functor that
associates with a ring A the collection of all n + 1-tuples (a0, a1, . . . , an) which
generate the ring A upto multiplication by units. Equivalently, one can think of all
surjective A-module homomorphisms An+1 → A modulo the equivalence induced
by multiplication by units. This functor is denoted Pn and is conceptualised as the
projective n-dimensional space. We use the symbol (a0 : a1 : · · · : an) to denote
the equivalence class under unit multiples of the n+ 1-tuple (a0, d1, . . . , an) which
gives rise to an element in Pn(A).
Now, if a = (a0 : a1 : · · · : ap) and b = (b0 : b1 : · · · : bq) are elements in

Pp(A) and Pq(A) respectively, then we can form the (p+1) · (q+1)-tuple consisting
of cij = aj · bj ; this tuple generates the ring A as well. Clearly, when a and b
are replaced by unit multiples ua and vb for some units u and v in A, the tuple
c = (cij)

p,q
i=0,j=0 is replaced by its unit multiple (uv)c. Thus, we have a natural

transformation Pp × Pq → Ppq+p+q. Moreover, one easily checks that the resulting
map on sets

Pp(A)× Pq(A)→ Ppq+p+q(A)
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is on-to-one for every finite ring A. This natural transformation is called the Segre
embedding.
For each positive integer d we can associate to a = (a0 : a1 : · · · : ap) the

(

p+d
d

)

tuple of all monomials of degree exactly d with the entries from a. For example,
if d = 2 then we take the

(

p+2
2

)

-tuple consisting of bij = aiaj . As above this gives

a natural transformation of functors Pp → P(
p+d

d )−1. For each finite ring A the
resulting map on sets

Pp(A)→ P(
p+d

d )−1(A)

is one-to-one. This natural transformation is called the d-tuple Veronese embedding.
The two examples above are special cases of projective subschemes defined as fol-

lows. Let F (X0, . . . , Xp) be any homogeneous polynomial in the variablesX0,. . . ,Xp

(in other words all the monomials in F have the same degree). While the value of
F at a p+ 1-tuple (a0, . . . , ap) can change if we multiply the latter by a unit, this
multiplication does nothing if the value is 0. Thus, the set

V (F )(A) = {(a0 : a1 : · · · : ap)|F (a0, . . . , ap) = 0}

is well-defined. More generally, we can define, for any finite collection F1, . . . , Fn
of homogeneous polynomials in the same p+ 1 variables

V (F1, . . . , Fn)(A) = {(a0 : a1 : · · · : ap)|Fi(a0, . . . , ap) = 0;∀i}

Such sub-functors of Pp(A) are called projective schemes. To emphasise the point,
a functor is a projective scheme if it is naturally isomorphic to one of the functors
of the form V (F1, . . . , Fn) for some homogeneous polynomials Fi in the set of p+1
variables Xi. In particular, the Segre embedding is given by the system of all
equations of the form ZijZkl = ZilZkj . For any monomial of degree 2d and two ways
of writing it as a product of monomials of degree d, we obtain a quadratic equation
satisfied by the elements of the Veronese embedding; this system of equations defines
the Veronese embedding.
There is also a natural way of thinking of affine schemes in terms of subfunctors

of Pn for a suitable n. As we saw above any affine scheme is a subscheme of Aq,
so it is enough to exhibit Aq as a subfunctor of Pn for a suitable n. Now it is
clear that if (a1, . . . , aq) is any q-tuple, then the collection (1, a1, . . . , aq) generates
the ring A so that this defines an element (1 : a1 : · · · : aq) of Pq(A). Conversely,
if (a0 : a1 : · · · : aq) is an element of Pq(A), such that a0 is a unit then this
is the same as (1 : a1/a0 : · · · : aq/a0), which in turn corresponds to the point
(a1/a0, . . . , aq/a0) in Aq.
A generalisation of the above is the notion of a quasi-projective scheme. In

addition to the homogeneous polynomials Fi considered above let G1(X0, . . . , Xp),
. . . , Gm(X0, . . . , Xp) be homogeneous polynomials of the same degree. We define a
quasi-projective scheme

V (F1, . . . , Fn;G1, . . . , Gm)(A) =
{

(a0 : a1 : · · · : ap)
∣

∣

Fi(a0, . . . , ap) = 0;∀i

and

(G1(a0, . . . , ap), . . . , Gm(a0, . . . , ap)) generate the ring A
}

Note that, we need to make sense of linear combinations of the Gi’s and hence it
is essential that they are all of the same degree. As before we will be interested in
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the underlying functor rather than its given representation as a subfunctor defined
by the “equations” Fi and the “inequations” Gj .
One can go further and define the notion of an abstract algebraic scheme but for

our purposes the notion defined above of a quasi-projective scheme (of finite type
over integers or of “arithmetic” type) will suffice.
Let F1,. . . ,Fn be a collection of equations which define a projective scheme and

d be no smaller than the maximum of their degrees. It is clear that the same
projective scheme is defined by the larger collection of the form Fj ·M where j
varies between 1 and n and M varies over all monomials of degree d − deg(Fj).
Thus we can always assume that a projective scheme is defined by homogeneous
equations of the same degree.
The complement of the subscheme of V (F1, . . . , Fn) is not the functor that assigns

to each A the set-theoretic complement Pp(A)\V (F1, . . . , Fn)(A), but in fact, when
Fi’s have the same degree it is the quasi-projective scheme V (0;F1, . . . , Fn)(A). The
reason for this choice becomes clear as we study schemes more. For the moment
it is enough to note that if A is the ring Fp[ε] = Fp[X]/(X2), then the element
(1 : ε : · · · : ε) is in the set-theoretic complement of (1 : 0 : · · · : 0) in Pp(A) but is
not in the scheme-theoretic complement that we have defined above.
Finally, letX ⊂ Pp be a quasi-projective scheme, and let F1,. . . , Fn be a bunch of

homogeneous polynomials of the same degree. The intersectionX∩V (F1, . . . , Fn; 1)
is clearly a subscheme of X and such subschemes are called closed subschemes
of X. The intersection X ∩ V (0;F1, . . . , Fn) is also a subscheme of X and such
subschemes are called open subschemes of X. More generally, the intersection of
V (D1, . . . , Dm;E1, . . . , En) and V (F1, . . . , Fk;G1, . . . , Gl) is the scheme

V (D1, . . . , Dm, F1, . . . , Fk; {Ei ·Gj})

The “Hilbert Basis theorem” asserts that the intersection of any (not necessarily
finite) collection of closed subschemes is a closed subscheme.
One very useful example of a closed subscheme is the subscheme Pp ⊂ Pp × Pp,

which is the diagonal; this is a closed subscheme of the scheme Pp × Pp defined by
the conditions XiYj = XjYi for 0 ≤ i, j ≤ p. For any p < q we can exhibit Pp as
the closed subscheme of Pq given by Xi = 0 for p < i ≤ q.
Like the case of set-theoretic complement, the set-theoretic union of closed sub-

schemes is in general not a closed subschemes. For example the smallest closed
subscheme of P2 that contains L = V (X1) and M = V (X2) is easily seen to be
V (X1X2); but it is possible for the product of two elements of a finite ring to be 0
without either of them being zero. Thus we can define the scheme-theoretic union
of a collection of closed subschemes to be the smallest closed subscheme that con-
tains the set-theoretic union (the set-theoretic union defines a subfunctor); such
a scheme exists by Hilbert’s basis theorem. From now on when we use the term
union of schemes we shall always mean the scheme theoretic union.
A closed subscheme Y ⊂ X is said to be a proper closed subscheme if for some

finite ring A, the subset Y (A) ⊂ X(A) is a proper subset. A scheme is said to
be reducible if it can be written as the union of two distinct (but not necessarily
disjoint!) proper closed subschemes. For example V (X1X2) in P2) is the union of
the two lines V (X1) and V (X2). Now even a proper closed subscheme Y ⊂ X can
be “essentially” all of X; for example consider the closed subscheme Y = V (X22 )
of the scheme X = V (X32 ). For any finite field F , we have Y (F ) = X(F ). A
scheme X is said to be reduced if it has no proper closed subscheme Y such that
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Y (F ) = X(F ) for all finite fields F . Note that the scheme V (X1X2) is reduced
but not irreducible, while V (X21 ) is irreducible but not reduced. Hilbert’s Basis
theorem can also be used to show that any scheme X has a closed subscheme Y
so that Y is reduced and Y (F ) = X(F ) for finite fields F . As a consequence of
the Lasker-Noether Primary Decomposition theorem any scheme can be written
as the union of a finite collection of irreducible closed subschemes; moreover, the
underlying reduced schemes of these closed subschemes are uniquely determined.
For example, consider the scheme L = V (X21 , X1X2) in P2. One can show that that
L is the union of the closed subschemes M = V (X1) and N = V (X21 , X1X2, X

2
2 ).

But L can also be written as the union of M and K = V (X21 , X0X2, X1X2, X
2
2 );

moreover N and K are distinct schemes.

8.3. Morphisms of schemes. We have already discussed natural transformations.
However, not all natural transformations of functors are “morphisms”; which we
now define. It is in fact easier to first define the notion of a “multi-valued” morphism
or correspondence.
Let L = V (F1, . . . , Fn;G1, . . . , Gm) be a quasi-projective scheme in Pp and K =

V (D1, . . . , Dk;E1, . . . , El) be a quasi-projective scheme in Pq. As before we can and
do assume that the collections {Di}, {Ei}, {Fi} and {Gi} have constant degrees.
Let Xi’s be the p+1 variables for Pp and Yj be the q+1 variables for Pq. If d1 is the
degree of the Dt’s then the bi-homogeneous polynomials of the form Dt ·M where
M is a monomial of degree d1 in the variables Xi can be written as polynomials
in the variables Zij = XiYj (by choosing some arbitrary pairing of X’s with Y ’s

for each term). Let {D̃t} denote the resulting collection of polynomials in Zij as
M varies over all possible monomials in the X’s and Ft’s vary. We have similar
collections {Ẽt}, {F̃t} and {G̃t}. One then checks quite easily that L(A) ×K(A)
is the subset of Ppq+p+q(A) defined by the conditions:

(1) The equations ZijZkl − ZilZkj = 0 hold.

(2) All the D̃t’s and the F̃t’s vanish.

(3) The evaluation of the collection {Ẽi·G̃j} results in a tuple that generates
the ring A.

In particular, this is also a quasi-projective scheme.
Thus, when X and Y are quasi-projective schemes, then so is X × Y . Hence,

for a sub-functor Z of X × Y it makes sense say that it is a subscheme; or more
specifically a closed or open subscheme. In particular, if W is a subscheme (resp.
closed or open subscheme) of Y , we see that X ×W is a subscheme (resp. closed
or open subscheme) of X × Y . Similarly, for subschemes of X. Another useful
closed subscheme is ∆X ⊂ X × X, the diagonal subscheme, which is defined by
intersecting X × X with the diagonal subscheme of Pq × Pq when X is given a a
subscheme of Pq.
A correspondence from X to Y is a closed subscheme of X ×Y . For any natural

transformation f : X → Y the graph Γf is the subfunctor of X ×Y which gives for
each finite ring A the graph of f(A) : X(A)→ Y (A). We say that f is a morphism
if Γf is a closed subscheme of X × Y . In other words, a morphism is a natural
transformation which is also a correspondence. Alternatively, if Z ⊂ X × Y is a
correspondence so that the projection Z(A) → X(A) is a bijection for all finite
rings A, then Z is the graph of a morphism.
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Now it follows easily that the identity natural transformation X → X is a
morphism with the diagonal as the associated correspondence. Moreover, each of
the projections X × Y → X and X × Y → Y is a morphism. It is also clear
that if W ⊂ X is a subscheme then the intersection of W × Y with Γf gives the
graph of the restriction of f : X → Y to W ; as a result this restriction is also a
morphism. If Z ⊂ X × Y is the graph of a morphism then the projection Z → X
is a morphism; its graph in Z ×X ⊂ X × Y ×X is the intersection of the diagonal
of the extreme terms (consisting of (x, y, x)) with Z ×X. The map Z(A)→ X(A)
is a bijection; let g : X → Z be the inverse natural transformation. The graph of
g in X × Z ⊂ X × X × Y is the intersection of ∆X × Y with X × Z. Thus g is
also a morphism. In other words, there are morphisms Z → X and X → Z with
composition either way being identity. Thus Z → X is an isomorphism.
Now, let f : X → Y be a morphism and g : Y → Z be another morphism. Let

W be the intersection of Γf × Z with X × Γg in X × Y × Z. Under the above
isomorphism X → Γf , we can identify W as a subscheme of X × Z. It clear that
W (A) is the graph of the composite natural transformation g ◦f . Thus, morphisms
can be composed.
Let f : X → Y be a morphism and W ⊂ Y be a subscheme. Then, we have

a subscheme of Γf given by its intersection with X × W . Since Γf → X is an
isomorphism, we obtain a subscheme of X as well; this scheme is usually denoted
f−1(W ) and called the inverse image of W under f . In some cases it may happen
that Γf is contained in X ×W so that f−1(W ) = X. In this case we say that the
morphism f factors through or lands inside W .
The theorem of Chevalley asserts that there is a smallest subscheme W of Y so

that f factors through W ; we can refer to W as the categorical image of f . Note
that it may not be true that W (A) is the image of X(A) in Y (A) even for one
non-zero finite ring A.
Given morphisms X → W and X → Z we easily check that the natural trans-

formation X → W × Z is a morphism. Given morphisms X → S and Y → S, we
obtain the compositions a : X × Y → X → S and b : X × Y → Y → S. Thus
we a morphism X × Y → S × S. The inverse image of the diagonal is denoted
X ×S Y and is called the fibre product of X and Y over S. For any morphisms
Z → X × Y such that the resulting composites with a and b are equal, we see that
the morphism actually lands in the subscheme X ×S Y .
One important example of a correspondence is the subscheme Z of Pp+q × Pq

defined by the conditions XiYj = XjYi for 0 ≤ i, j ≤ q. Let U be the open
subscheme of Pp+q given by U = V (0;X0, X1, . . . , Xq). For (a0 : · · · : ap+q) in
U(A), the tuple (a0, . . . , aq) generates the ring A, thus we see that we see that
((a0 : · · · : ap+q), (a0 : · · · : aq)) gives an element of Pp+q(A)× Pq(A) which clearly
lies in Z(A). Conversely, if ((a0 : · · · : ap+q), (b0 : · · · : bq)) lies in Z(A) and
(a0, . . . , aq) generate the ring A, then the above equations show that there is a
unit u in A so that bi = uai (apply the Chinese Remainder theorem for finite
rings!). Thus, the projection Z(A)→ Pp+q(A) is a bijection over U(A) and gives a
morphism U → Pq. This morphism is called the projection on Pp+q away from the
linear subscheme (or subspace!) V (X0, . . . , Xq); more generally, we can refer to the
above correspondence as the projection correspondence.
A natural generalisation of this is to consider a collection F0,. . . ,Fq of homoge-

neous polynomials of the same degree in variables X0,. . . ,Xp; we can then take the



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 45

subscheme Z of Pp × Pq defined by the equations

Fi(X0, . . . , Xp)Yj = Fj(X0, . . . , Xp)Yi

for 0 ≤ i, j ≤ q. We can take U to be the open subscheme defined by U =
V (0;F0, . . . , Fq). The correspondence Z restricts to a morphism U → Pq. The
scheme Z is referred to as the blow-up of Pp along the closed subscheme Y =

V (F1, . . . , Fq) and is sometimes denoted P̃pY .
For any functor F on the category of finite rings we can introduce a new functor

TF which associates to a finite ring A the set F (A[ε]) where A[ε] denotes the finite
ring A[T ]/(T 2). The morphism A[ε] → A that sends ε to induces a natural trans-
formation of functors TF → F . Now, if F = Pp is the projective space then TPp(A)
consists of equivalence classes of p+ 1-tuples

(a0 + b0ε, . . . , ap + bpε) ' (ua0 + (a0b+ ub0)ε, . . . , uap + (apb+ ub0)

where u is a unit in A and (a0, . . . , ap) generate the ring A (this is enough to
ensure generation of A[ε] by the above p + 1-tuple). The elements sij = aiaj
and tij = biaj − ajbi are invariants associated with the equivalents class upto
simultaneous multiplication by a unit u in A. Thus, if we consider the equivalence
classes (under multiplication by units in A) of pairs (S;T ) where S is a symmetric
matrix and T an anti-symmetric matrix; then the equations satisfied by S and T
are

sijskl − siksjl = 0(1)

tijskl + tjksil + tkisjl = 0(2)

Moreover, the entries sij of S generate the ring A. Conversely, a pair of matrices
(S, T ) satisfying the two equations and the condition that the entries of S generate
the ring can be seen to arise in from an element Pp(A[ε]).

Proof. Let us assume that A is a finite local ring (the other cases follow from the
Chinese Remainder Theorem). In this case, at least one of the entries sij must be
a unit (since a sum of nilpotent elements is nilpotent). The equation sijsij = siisjj
shows that sii must also be a unit. Let us then define ak = sik/sii and bk = tki.
The equation sjksii = sijsik implies that sjk = ajak as required. Moreover, the
equation

tjksii = tjiski − tkisji

shows us that tjk = bjak − bkaj as required. ¤

The collection of equivalence classes of pairs (S;T ) under multiplication by units

in A can be identified with Pp
2+2p. Thus TPp is naturally isomorphic to the quasi-

projective scheme

V (SijSkl − SikSjl, TijSkl + TjkSil + TkiSjl;Sij)

This quasi-projective scheme is the Zariski Tangent Scheme of Pp. More generally,
for any quasi-projective scheme X given as a subscheme of Pp one can show that
the functor TX is naturally isomorphic to a subscheme of TPp . In other words, TX
is also a quasi-projective scheme; this scheme is called the Zariski Tangent scheme
of X. Moreover, the natural transformation TX → X (given by the natural map
X(A[ε]) → X(A)) is a morphism of schemes. This gives an important example of
a vector space scheme; a notion that we will introduce in the next section.
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8.4. Relativisation and categorical constructions. Now that we have con-
structed morphisms it follows that quasi-projective schemes form a category. One
standard construction is that of the slash category associated with an object S
which is denoted by /S. The objects in this category are morphisms X → S. The
morphisms are commutative diagrams

X → Y
↘ ↙

S

The products in this category are provided by fibre products. Geometrically, we
conceptualise the objects X → S as families of spaces parametrised by S. Note
that there is a natural and unique morphism from any scheme X to the scheme 1
(which we have called a point or Spec(Z) or A0 or P0 above in different places!).
Thus schemes are in fact naturally parametrised by Spec(Z).
For any morphism T → S we can “re-parametrise” or perform base change by

associating X ×S T → T with X → S. One checks that this gives a functor from
the slash category /S to the slash category /T .
For example, let N be any integer and consider the rings Z/NZ and Z[1/N ].

The schemes over Spec(Z/NZ) are the schemes “modulo N”. The schemes over
Spec(Z[1/N ]) are schemes “outside N”. In particular, we can take N = p a prime
to get schemes over Spec(Fp) or schemes of characteristic p. We occasionally see
statements like “the following is true outside characteristic 2 and 3”; this can be
interpreted as a statement about schemes over Spec(Z[1/6]).
For many algebraic object that can be defined diagram-theoretically, there are

associated types of objects in the category /S. For example we can define a group
as a set G with maps µ : G×G→ G for multiplication, ι : G→ G for inverse and
e : 1→ G which maps the singleton set to the identity element of G. These satisfy
various commutative diagrams which ensure that multiplication is associative, the
product of an element and its inverse is identity and the identity multiplied with
anything is identity.

G×G×G
1×µ
−−−→G×G

µ×1 ↓ ↓ µ

G×G×G
1×µ
−−−→G×G

G
∆
−→G×G

1×ι
−−→G×G

↘ ↓ µ

1
e
−→ G

G
1×e
−−→G×G
1↘ ↓ µ

G

Thus we can define a group scheme over S as a morphism G→ S with morphisms
in /S; µ : G ×S G → G and ι : G → G and e : S → G which satisfy the same
commutative diagrams. One example is the scheme Gm = Spec(Z[X,Y ]/(XY −1))
which is called the multiplicative group of units since it associates to every finite
ring A the group of units in A.
Similarly a ring R is a set with maps µ : R × R → R for multiplication, α :

R × R → R for addition, − : R → R for negation, 0 : 1 → R for the zero element
and 1 : 1 → R for the multiplicative identity. The various laws of associativity,
distributivity, commutativity (of addition) and additive and multiplicative identity
can again be formulated in terms of commutative diagrams. We can use such
diagrams to define the notion of a ring scheme. One important example is that of
Ga = Spec(Z[X]) called the additive group or the structure ring, since it associates
to each finite ring A the ring A itself with its natural structure.
We can similarly define the notion of group scheme actions on a scheme and

modules schemes over a ring scheme. One important example is that of vector space



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 47

schemes, which are group schemes that are also modules over the ring scheme Ga.
These are so called because, if V → S is a vector space scheme over S and k is a
finite field, then the collection of all elements of V (k) that map to a fixed element in
S(k) acquire the natural structure of a vector space over k. We can form a natural
vector space scheme out of Aq; we denote this scheme by Vq. Clearly, Vq×S → S is
a vector space scheme over S for any S. Another example of a vector space scheme
the scheme TS considered above. This is called the (Zariski) Tangent scheme of S.
Some other important examples of vector space schemes are as follows. Let

H = V (0;X0, X1, . . . , Xp) be the complement of the point (0 : · · · : 0 : 1) in Pp+1.
The projection way from this point gives a morphism H → Pp. This is a vector
space scheme with “zero section” given by Pp → H which maps (a0 : · · · : ap) to
(a0 : · · · : ap : 0). For any i between 0 and p we have sections Pp → H given
by sending a0 : · · · : aq) to (a0 : · · · : aq : ai). Considering the set Pp(A) as
equivalence classes of surjective A-module homomorphisms Ap+1 → A, it is clear
that the kernel of this homomorphism is independent of the chosen representative
of the equivalence class. This defines a sub-vector space scheme of Vp+1×Pp → Pp.
Another vector space scheme over Pp consists of the subscheme of Vp+1×Pp which
is defined by ViXj = VjXi; this vector space scheme is denoted L.
If V → S is a vector space scheme then for any morphism T → S it is clear that

V ×S T → T is one as well. In particular, vector space schemes can be restricted to

subschemes. The restriction of the vector group scheme denoted H over P(
p+d

d )−1

to the Veronese embedding of Pp is denoted Hd → Pp.

8.5. The category of vector space schemes. One can easily “relativise” the
notion of a homomorphism of modules to define the notion of a homomorphism of
vector space schemes.
The inverse image of the zero section under such a homomorphism a sub-vector

space scheme of the domain of the homomorphism. This, defines the kernel of a
homomorphism of vector space scheme. The image of a homomorphism E → F of
vector space schemes over S is also a sub-vector space scheme. In particular, we
see that the notion of exact sequences of vector space schemes can be defined by
saying the the image of one morphism is the kernel of the next.
In fact these objects form an abelian category. In order to do this we need The

Coherence theorem for vector space schemes:

(1) For any vector space scheme V → S there is an embedding S ⊂ Pp and an
integer m and an injective homomorphism of vector space schemes V →
H⊕m; here by abuse of notation we use H to denote the restriction of the
vector space scheme H → Pp defined earlier.

(2) Given any homomorphism V → H⊕md , there is a homomorphism H⊕md →

H⊕nd+e for some e and n so that the image of V is the kernel of the latter
homomorphism.

Now a homomorphism Hd → Hd+e can be identified with a homogeneous poly-
nomial of degree e. Thus, the coherence theorem can be used to give a concrete
definition of vector space schemes in terms of n×m matrices of homogeneous poly-
nomials of degree e. Another application is the construction of cokernels. Given
V ⊂W a sub-vector space scheme, we can write W as a sub-vector space scheme of
H⊕nd and find a homomorphism H⊕nd → H⊕md+e so that V is the kernel. Then W/V

is clearly identified with the image of W in H⊕md+e.
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For example let Pn−1 be considered as the closed subscheme of Pn defined by a
single linear equation Xn = 0. The vector space scheme V1×Pn−1 can be extended
by zero to give a vector space scheme on Pn which we denote by (V1 × Pn−1)Pn .
We also have the morphism V1×Pn → H given by the 1×1 matrix with entry Xn.
One easily sees that this gives an exact sequence of vector space schemes

0→ (V1 × Pn−1)Pn → V1 × Pn → H → 0

More generally, this can be done with any linear polynomial in the Xi’s that gives
a surjective linear map Zn+1 → Z. The corresponding subscheme is isomorphic is
again Pn−1.
An irreducible (or atomic) object in an abelian category is defined as one which

has no non-trivial sub-objects Ideally we would like to write every vector space
scheme as a sum of irreducibles. However, it turns out that this is not possible. A
compromise solution is to “semi-simplify” the operation as per a construction due
to Grothendieck.
The Grothendieck K-group of a scheme S is the quotient of the free group

generated by isomorphism classes of vector space schemes over S by the relations
of the form [V ] = [U ] + [W ] when 0 → U → V → W → 0 is an exact sequence.
Quillen has generalised this construction to define the groups Ki for any exact
category. Grothendieck’s K group then becomes K0. The K0 group of vector space
schemes over S is denoted G0(S).
For any closed subscheme T of S, we have a vector space scheme on S obtained by

extending by zero the vector space scheme V1×T ; we use the symbol [T ] to denote
the corresponding element of G0(S). From the above exact sequence we see that
for any linear subscheme M ∼= Pn−1 in Pn we have the equation [M ] = [Pn] − [H]
in G0(Pn). Now the right hand side is independent of the linear equation chosen so
that [M ] becomes independent of the specific linear subspace M .

8.6. Vector Bundles and regular schemes. Most of the examples of vector
space schemes that we have seen so far are vector bundles; these are vector space
schemes that are “locally” isomorphic to Vn for some fixed n. In other words,
E → X is a vector bundle if there is a collection of open subschemes Ui ⊂ X such
that ∪Ui(A) = X(A) for every finite local ring and E×XUi is isomorphic to Vn×Ui
as a vector space scheme over Ui for every i. A collection of open sets satisfying
the first property is referred to as an open cover of X. The vector bundle Vq ×X
is called the trivial vector bundles on X. The number n is called the rank of the
vector bundle.
Recall, that L was defined as the subscheme of Vp+1 × Pp consisting of pairs of

tuples (b0, . . . , bp; a0 : · · · : ap) such that aibj = ajbi for all i and j between 0 and p.
An open cover of Pp is given by the open subschemes Ui = V (0;Xi). We see easily
that L×Pp Ui is given by the equations bj = (aj/ai)bi since ai is a unit. Thus the
map from Ga × Ui to L×Pp Ui given by

(c; a0 : · · · : ap) 7→ ((a0/ai)c, . . . , (ap/a0)c; a0 : · · · : ap)

gives an isomorphism. Thus L is a vector bundle of rank 1 or a line bundle. Recall
also that H was defined as the subscheme of Pp+1 which is the complement of the
point (0 : · · · : 0 : 1). The morphism H → Pp is the projection away from this point
and the zero-section is V (Xp+1). For each i between 0 and p we have a natural
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homomorphism si : Ga × Pp → H given by

(c; a0 : · · · : ap) 7→ (a : 0 : · · · : ap : c · ai)

Note that this is an isomorphism outside the hyperplane V (Xi); in other words this
is an isomorphism on Ui = V (0;Xi). Thus H is also a line bundle.
The automorphisms of the vector space Vn are given as the closed subscheme

GLn of An2+1 consisting of ((Xij)
n
i,j=1, T ) such that det((Xij))T = 1. For any

scheme X, any automorphism of the vector space scheme Vn × X corresponds
naturally to a morphism g : X → GLn. Moreover, it is clear that GLn is a group
scheme.
Now let E be a vector bundle over a scheme X, {Ui} be an open cover of X

and φi be the isomorphism of vector space schemes φi : E ×X Ui → Vn × Ui. For
any i and j it is clear that we get a morphism φij : Ui ∩ Uj → GLn by comparing
the two isomorphisms of E ×X (Ui ∩ Uj) with Vn × (Ui ∩ Uj). These morphisms
satisfy φij · φjk = φik on Ui ∩ Uj ∩ Uk. Conversely, it is clear that we can use such
a collection of morphisms φij : Ui ∩ Uj → GLn to construct a vector bundle on
X by patching together the vector bundles Vn × Ui. More generally, we can easily
show that for any vector space scheme V on X, the group scheme GLn operates
on V ⊕n. Thus we can use the φij to patch together V

⊕n ×X Ui to obtain a vector
space scheme. This vector space scheme is denoted E ⊗ V and is called the tensor
product of E with V . It is clear that V1 ⊗ V = V . One can show that Hn = H⊗n

and H ⊗ L = V1 × Pp.
As before we define the K-group of vector bundles of a scheme S as the quotient

K0(S) of the free abelian group on isomorphism classes of vector bundles by the
subgroup generated by relations of the form [V ] + [U ] − [W ] where 0 → V →
W → U → 0 is an exact sequence of vector bundles. Note that any vector bundle
is a vector space scheme and an exact sequence of vector bundles is also an exact
sequence of vector space schemes. Thus we have a natural homomorphismK0(S)→
G0(S). When S is a regular scheme this is an isomorphism; usually one gives a
definition of regular schemes in terms of ring theory and proves the equivalence,
but we could equally well use this as a definition. As a particular case we have
the “Jacobian criterion” which says that a scheme is regular if the Zariski tangent
vector space scheme is a vector bundle; note however that this is not in general
necessary. For example the subscheme of A2 defined by XY = p for some prime p
is regular but its Zariski tangent space is not a vector bundle.
In fact the tensor product construction makes K0(S) into a ring and G0(S) a

module over this ring.

8.7. Action of correspondences. If 0→ V →W → U → 0 is an exact sequence
of vector space schemes over a scheme X and if Y → X is a morphism then the
pull-back sequence of vector space schemes

0→ V ×X Y →W ×X Y → U ×X Y → 0

is not in general exact. We say that Y → X is flat if this is so. However, if V
is a vector bundle then the pull back sequence of vector space schemes is exact
regardless of the nature of the morphism Y → X. Thus we have a homomorphism
K0(X) → K0(Y ) for any morphism Y → X and a homomorphism G0(X) →
G0(Y ) when Y → X is flat. An important property of tensor products is that the
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homomorphism K0(X)→ K0(Y ) is a ring homomorphism and when X → Y is flat
the homomorphism G0(X)→ G0(Y ) is a homomorphism of K0(X) modules.
Now, let X be a closed subscheme of Z = Pn × Y . We want to construct a

homomorphism G0(X) → G0(Y ). This can be done in two steps (provided we
prove that the construction is independent of the factorisation). The first step is to
consider a vector space scheme on X as a vector space scheme on Z (of which it is
a closed subscheme). We have already seen how to do this by “extending by zero”;
it is moreover clear that this preserves exact sequences. Thus we obtain a natural
homomorphism G0(X)→ G0(Z).
Hilbert’s syzygy theorem can be used to describe G0(Pn×Y ) in terms of G0(Y )

as follows. For any integer n we have a line bundle Hn on Pn as described above;
let W be any vector space scheme on Y . We have a vector space scheme Hk £W
on Pn × Y obtained as

Hk £W = (Hk × Y )⊗ (Pn ×W )

Let V be any vector space scheme on Pn × Y , the syzygy theorem asserts that
there is a a sequence of positive integers k0, . . . , kn and a sequence of vector space
schemes Wn on Y which fit into an exact sequence

0→ V → Hk0
£W0 → · · · → Hkn

£Wn → 0

Thus G0(Pn × Y is generated by G0(Y ) as a module over K0(Pn). Moreover, to
define the homomorphism G0(Pn × Y → G0(Y ) it is enough to define the image of
terms of the form Hk £W (and check for consistency).
Consider the exact sequence which was introduced above

0→ (V1 × Pn−1)Pn → V1 × Pn → H → 0

By tensoring this with W and Hk−1 we get an exact sequence on Pn × Y

0→ (Hk−1|Pn−1)£W → Hk−1 £W → Hk £W → 0

This allows us to write the class of Hk £W in G0(Pn × Y as

[Hk £W ] = [Hk−1 £W ]− [Hk−1|Pn−1 £W ]

The second term on the right hand side can be thought of as an element of
G0(Pn−1×Y ). By induction we can thus reduce the problem of defining the image
of [Hk£W ] in G0(Y ) to that of defining the image of [(V1×Pm)£W ]. The image
of the latter is just [W ]. The consistency of this definition can be checked by the
theory of “cohomology” and higher direct images. Thus we have a homomorphism
G0(Pn × Y ) → G0(Y ) and more generally for any closed subscheme X of Pn × Y
we have G0(X)→ G0(Y ).
Now let X be a projective scheme (i. e. a closed subscheme of Pn), and let Y be

any scheme. Let Z ⊂ X × Y be a correspondence from X to Y (i. e. Z is a closed
subscheme of X × Y ). We obtain a homomorphism K0(X)→ K0(Z); additionally,
when Z → X is flat we obtain a homomorphism G0(X) → G0(Z). By using the
sequence of closed inclusions Z ⊂ X × Y ⊂ Pn × Y we also have a homomorphism
G0(Z) → G0(Y ). Thus we see that for any correspondence from a projective
scheme X to a scheme Y we obtain a homomorphism K0(X) → G0(Y ) and when
the correspondence is flat over X we get a homomorphism G0(X) → G0(Y ). In
particular, correspondences from a regular scheme X to itself act as automorphisms
of G0(X) = K0(X). This is a very useful tool in analysing the structure of K0(X)
for such schemes.
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8.8. Cryptosystems. As seen earlier algebraic cryptosystems rely on explicit ma-
nipulations with finite abelian groups. All the finite abelian groups that have been
used as cryptosystems so far are specific K-groups of schemes with minor modifica-
tions. Thus it would seem that a useful way of diversifying the collection of groups
available for cryptosystems would be to study all K-groups of schemes. This is
difficult because there is (so far) no way to explicitly bound the generators of such
groups—indeed the fact that these groups are finitely generated is no yet proved!
In computational applications we would also need explicit ways of representing el-
ements and reducing sums of such elements to the representative ones. While the
description of every element in terms of matrices using the “syzygy” approach de-
scribed above is possible much more work needs to be done to make K-groups of
all schemes computationally approachable. However, in the case of some specific
schemes this can be done. This is what we explore in the next section.


