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APPENDIX B. COMPARISON WITH “CLASSICAL’ DEFINITION

In order to compare the given definition of schemes with the “classical” one, we
will prove the following theorem:

Theorem 18. Let f : R — S be a homomorphism between finitely generated rings
so that for every finite ring A, the induced map Hom(S, A) — Hom(R,A) is a
bijection. Then f is an isomorphism.

In the paragraphs below R and S will always denote rings satisfying the condi-
tions of the theorem. We first prove a special case:

Lemma 19. Let f : R — S be a homomorphism of finite rings so that for every
finite ring A the induced map Hom(S, A) — Hom(R, A) is a bijection. Then f is
an isomorphism.

Proof. Taking A = R we see that there is a homomorphism g : S — R such that
the composite go f : R — S — R is identity. For any finite ring A, consider the
chain of maps

Hom(R, A) — Hom(S, A) — Hom(R, A)

The second map is a bijection by assumption. The composite is the identity and
in particular, a bijection. It follows that Hom (R, A) — Hom(S, A) is a bijection as
well. Now, taking A = S we see that we also have a homomorphism A : R — S so

that the composite homomorphism S < R L, S is the identity. We then have
f=idsof =hogo f=hoidg=h
Thus f og =ids and g o f = idg, hence f and g are isomorphisms. O
Next, we show that the above condition is “inherited” by quotients.

Lemma 20. Let f : R — S be as above. Let I be an ideal in R, then we ob-
tain a homomorphism R/I — S/f(I)S. For any finite ring A, the induced map
Hom(S/f(I)S,A) - Hom(R/I, A) is a bijection.

Proof. Consider the diagram

Hom(S, A) - Hom(R, A)
T T
Hom(S/f(I)S, A) Hom(R/I,A)

The top row is a bijection. Let g : S/f(I)S — A be any element in the bottom left
corner then the corresponding element h : S — A in the top left corner satisfies
h(f(I)S) =0. Thus ho f : R — A satisfies ho f(I) = 0. Thus it factors through
a homomorphism e : R/I — A. Thus we see that the elements in the bottom
left corner are mapped to elements in the bottom right corner. Conversely, let
g:R/I — A be an element in the bottom right corner and h : R — A be its image
in the top right corner; then hA(I) = 0. By assumption there is a homomorphism
e:S — Asuch that h =eo f. It follows e(f(I)) = 0 and thus e(f(I)S) = 0. Thus
e factors through an element d : S/f(I)S — A in the bottom left corner. In other
words we have a bijection Hom(S/f(I)S, A) - Hom(R/I, A). O

Combining the above two lemmas we see that if I is any ideal in R such that
R/I and S/f(I)S are finite, then the map R/I — S/f(I)S is an isomorphism. We
will now show that if R/I is finite then S/f(I)S is “automatically” finite as well.
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Lemma 21. Let f: R — S be as in the theorem. For any mazimal ideal m in R,
the ideal f(m)S in S also a mazimal ideal.

Proof. Since R is finitely generated R/m is a finite field by Hilbert’s Nullstellensatz.
Thus Hom(S,R/m) — Hom(R,R/m) is a bijection and so the homomorphism
R — R/m must factor through S; moreover, this factorisation is unique. Let n
be the kernel of this factorisation. Then n is a maximal ideal containing f(m)S
such that R/m — S/n is an isomorphism. Now, let n' be any maximal ideal in
S containing f(m)S. Then, the composite R — S — S/n' factors through R/m.
Thus, S/n' is a finite field extension of R/m. If this extension has degree > 1 then
if q is the cardinality of R/m, the map z — z? is a non-trivial automorphism of
S/n' which is identity on R/m. Thus we obtain two maps S — S/n' which restrict
to the same map R — S/n’ contradicting the hypothesis. Thus R/m — S/n' is an
isomorphism. But then this isomorphism gives a map S — R/m which restricts to
the natural map R — R/m; there is a unique such map by hypothesis. Since that
map has kernel n, we see that n’ = n.

In other words, we see that f(m)S is contained in a unique maximal ideal n
in S. Thus S/f(m)S is an Artinian ring. By the earlier discussion we see that
R/m — S/f(m)S is an isomorphism. In other words f(m)S = n is a maximal
ideal for every maximal ideal m in R. Conversely, if n is any maximal ideal in S,
then f~1(n) = m is the kernel of the composite R — S — S/n which is a map to
a finite field; hence m is a maximal ideal. It follows that every maximal ideal in S
is of the form f(m)S for a maximal ideal m in R. O

Now, if I is any ideal such that R/I is finite then there are finitely many maximal
ideals my, ..., my and positive integers ry, ..., 1y such that I D mi' -m3*---mp*.
As seen above n; = f(m;)S is a maximal ideal. The relations

f)S D f(mi*---m¥)S =ni"---nit

shows that the ring S/f(I)S is finite as well. It follows that for any ideal I such
that R/I is finite, the map R/I — S/f(I)S is an isomorphism.

On the other hand suppose J is any ideal in S such that S/J is finite and let
I = f~1(J); then R/I is a subring of S/J and thus also finite. We have seen above
that this implies that R/I — S/f(I)S is an isomorphism. But the inverse image
of J/f(I)S under this is the zero ideal in R/I. Thus we have J = f(I)S. To
summarise,

Lemma 22. Let f : R — S be as in the conditions of the theorem. The map
I — f(I)S is a one-one correspondence between ideals of finite index in R and
ideals of finite index in S. The map J — f~1(J) is the inverse correspondence from
ideals J in S to ideals in R. Moreover, the natural homomorphism R/I — S/f(I)S
is an isomorphism for such ideals.

Thus the original condition has been re-stated intrinsically in terms of ideals.
Next we wish to prove that the given homomorphism is “closed”. That is to say
given a prime ideal @ in S, let m be a maximal ideal in R that contains the prime
ideal P = f~1(Q). We wish to prove that there is a maximal ideal n in S which
contains () and satisfies f~!(n) = m. To do this we can restrict our attention to
R/P — S/f(Q)S. Since f~1(f(P)S) C f~1(Q) = P, the latter homomorphism is
also injective.
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Lemma 23. Let f : R — S be an injective homomorphism of finitely generated
rings with R a domain. We have a factoring of f as follows

R—)R[Xl,...,Xa] =Ry —>R1[t1,...,tb] =Ry =S
where
(1) Ry is a polynomial Ting over R.
(2) There is a non-zero element r of Ry such that for each i, the element
rt; € Ry satisfies a monic polynomial over Ry. Other than this relation

there are no further relations among the t; in R,.
(3) Ry — S is the quotient by an ideal that intersects Ry in the zero ideal.

Proof. Since S is finitely generated we can choose a maximal collection of elements
X1, ..., X, of S that are algebraically independent over (the quotient field of) R.
Then Ry = R[X1,...,X,] is the polynomial ring over R and is a subring of S. The
remaining generators of S are algebraically dependent on the X;’s. Thus each of
them satisfies an equation of the form roT?® 4+ 7% ! + ... + r; for some elements
r;j in R;. Moreover, we can assume that 7¢ is non-zero in such an equation. Let
r be the product in R; of polynomials ¢ corresponding to different generators of
S. Since R is a domain, so is R; and the polynomial r is non-zero. For each
generator S choose a polynomial of the above form with leading coefficient r (one
such such clearly exists) and let Ry be the ring obtained from R; by adjoining the
roots of these equations. We have a natural map Ry — S; let a be the kernel. Since
Ry — S factors through R, and is injective, it follows that a intersects R; in the
zero ideal. O

Let @4, ..., @, be the minimal primes in S or equivalently a minimal primes
in Ry that contains the kernel of Ry — S. Since R; meets this kernel in the zero
ideal, the intersection of the prime ideals Q; N Ry in R; is a nilpotent ideal. Since
R; is a domain there is an index 4 such that Q; N R; = (0). Let @ denote the prime
ideal Q; for any such index 4.

Let m be a maximal ideal in R such that r is not contained in the prime ideal
m[X1,...,X,] of R;. Since R; is a domain we see that @, N (Ry), is the zero ideal.
Now, (R2), is a finite free module over (R;), and so (by the going up theorem)
there is a prime ideal @' in Ry which contains () and restricts to m[Xq,..., X,]
in Ry. Similarly, for any maximal ideal n' in R; that contains m[X1,...,X,] and
does not contain r, there is a maximal ideal n in R, that contains @' (and hence
Q) that lies over n'.

Now, if a > 0 (i. e. R # R;) then there are at least two (in fact infinitely many)
such maximal ideals n'. But then we see that we have at least two maximal ideals
in S that lie over a given maximal ideal m in R contradicting lemma 22. Thus we
must have R = R;.

Again, if Q is another minimal prime in Ry that contains the kernel of Ry — S
and such that Q N Ry = (0), then as above we can find a prime ideal Q' which
contains @ and lies over m and is distinct from Q’. Now there are distinct maximal
ideals n' and n' in R», that contain Q' and Q' respectively. This again contradicts
lemma, 22. It follows that there is a unique minimal prime @) containing the kernel
of Ry — S such that @ N R = (0).

Now suppose that ()¢ is another miminal prime in S, or equivalently a minimal
prime in Ry that contains the kernel of Ry — S. We must have Qo N R # (0).
However, we have the lemma,
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Lemma 24. Let f : R — S be a homomorphism of finitely generated rings with
R a domain. Let Q be a minimal prime in S such that f~1(Q) is non-zero. Then
there is a mazimal ideal n in S and an integer k such that if m = f~'(n), then
R/m* — S/n* is not an isomorphism.

Proof. Let x be an element of all the minimal primes of S other than (). Replacing
S by its localisation S, at z, we can assume that () is the unique minimal prime
in S. Then @ consists of nilpotent elements. Since f~1(Q) is non-zero and R is a
domain it follows that R — S has a non-zero kernel. Now let n be any maximal
ideal in S and m = f~!(m). The homomorphism of local rings R,, — S, has a
non-zero kernel. The result follows by the Artin-Rees lemma. O

On the other hand, for our given homomorphism R — S we know that R/m* —
S/n* must be an isomorphism for all k. It follows that there is no such prime ideal
QO in S.

We have thus proved that there is a unique prime ideal @ in S that lies over
a given prime ideal P in R and f~!(Q) = P. The “closed”-ness condition is an
immediate corollary.

Let us note that if R[X] is the polynomial ring over a ring R, then Hom(R[X], A)
is naturally identified with Hom(R, A) x A. Thus, if g : R[X] — S[X] denotes the
natural extension of the above homomorphism to the corresponding polynomial
rings then, for any finite ring the induced map Hom(S[X], A) - Hom(R[X], A) is
a bijection whenever Hom(S, A) — Hom(R, A) is a bijection. In particular, we can
apply the above lemmas to the homomorphism g as well.

Lemma 25. Let f : R — S be as in the theorem and g : R[X] — S[X] be the
induced homomorphism on polynomial Tings in one variable. Let o be any element
of S and b be the ideal (X —a)S[X] in S[X]. Let a be the ideal g~ ((X — a)S[X]).
Then a contains a monic polynomial.

Proof. Let A be any ring and a be an ideal in the polynomial ring A[X]. Let a;
denote the ideal a - A[X, X '] in the ring A[X, X ~!]. We have

a; = {P(X)- X "|P(X) € a and n > 0 an integer }
Let ay be the restriction a; N A[X 1] of this ideal to A[X ~1]. We have
ay = {P(X)- X4 P(X) € a and d = deg(P(X))}

The content c(a) of the ideal a is defined as the image of as in A[X!]/(X~!) = A.
Clearly,

¢(a) = {a € A|IFP(X) € a such that P(X) = aX? + lower degree terms }

Returning to the rings R and S let us use the subscripts 1 and 2 to denote the
above constructions applied to ideals in R[X] and S[X]; specifically to the ideals a
and b.

We want to show that the content c(a) of the ideal a in R[X] is the unit ideal.
Suppose that c(a) C m for some maximal ideal m in R. The ideal i = m[X '] +
X~1R[X 1] is then a maximal ideal in R[X ~!] which contains a,. Moreover, by the
above description of as it is clear that as = g; ' (b2), where g, : R[X '] — S[X ]
is the natural homomorphism. Applying the “going-up” which has been proved
above, it follows that there should exist a prime ideal p containing by such that
g;l(ﬁ) = 7. But by is the ideal generated by 1 —aX ! and X! lies in . Thus $
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would have to be the unit ideal which contradicts its primality. It follows that c(a)
is the unit ideal. O

From this lemma we see that S is integral over R. Now the result that R/m —
S/ f(m)S is an isomorphism for all maximal ideals m implies theorem 18 by Nakayama’s
lemma.



