APPENDIX B. COMPARISON WITH "CLASSICAL" DEFINITION

In order to compare the given definition of schemes with the "classical" one, we will prove the following theorem:

Theorem 18. Let $f: R \to S$ be a homomorphism between finitely generated rings so that for every finite ring A, the induced map $\operatorname{Hom}(S,A) \to \operatorname{Hom}(R,A)$ is a bijection. Then f is an isomorphism.

In the paragraphs below R and S will always denote rings satisfying the conditions of the theorem. We first prove a special case:

Lemma 19. Let $f: R \to S$ be a homomorphism of finite rings so that for every finite ring A the induced map $\operatorname{Hom}(S,A) \to \operatorname{Hom}(R,A)$ is a bijection. Then f is an isomorphism.

Proof. Taking A=R we see that there is a homomorphism $g:S\to R$ such that the composite $g\circ f:R\to S\to R$ is identity. For any finite ring A, consider the chain of maps

$$\operatorname{Hom}(R, A) \to \operatorname{Hom}(S, A) \to \operatorname{Hom}(R, A)$$

The second map is a bijection by assumption. The composite is the identity and in particular, a bijection. It follows that $\operatorname{Hom}(R,A) \to \operatorname{Hom}(S,A)$ is a bijection as well. Now, taking A = S we see that we also have a homomorphism $h: R \to S$ so that the composite homomorphism $S \xrightarrow{g} R \xrightarrow{h} S$ is the identity. We then have

$$f = id_S \circ f = h \circ g \circ f = h \circ id_R = h$$

Thus $f \circ g = id_S$ and $g \circ f = id_R$, hence f and g are isomorphisms.

Next, we show that the above condition is "inherited" by quotients.

Lemma 20. Let $f: R \to S$ be as above. Let I be an ideal in R, then we obtain a homomorphism $R/I \to S/f(I)S$. For any finite ring A, the induced map $\operatorname{Hom}(S/f(I)S,A) \to \operatorname{Hom}(R/I,A)$ is a bijection.

Proof. Consider the diagram

$$\begin{array}{ccc} \operatorname{Hom}(S,A) & \to & \operatorname{Hom}(R,A) \\ \uparrow & & \uparrow \\ \operatorname{Hom}(S/f(I)S,A) & & \operatorname{Hom}(R/I,A) \end{array}$$

The top row is a bijection. Let $g: S/f(I)S \to A$ be any element in the bottom left corner then the corresponding element $h: S \to A$ in the top left corner satisfies h(f(I)S) = 0. Thus $h \circ f: R \to A$ satisfies $h \circ f(I) = 0$. Thus it factors through a homomorphism $e: R/I \to A$. Thus we see that the elements in the bottom left corner are mapped to elements in the bottom right corner. Conversely, let $g: R/I \to A$ be an element in the bottom right corner and $h: R \to A$ be its image in the top right corner; then h(I) = 0. By assumption there is a homomorphism $e: S \to A$ such that $h = e \circ f$. It follows e(f(I)) = 0 and thus e(f(I)S) = 0. Thus e factors through an element $d: S/f(I)S \to A$ in the bottom left corner. In other words we have a bijection $\text{Hom}(S/f(I)S, A) \to \text{Hom}(R/I, A)$.

Combining the above two lemmas we see that if I is any ideal in R such that R/I and S/f(I)S are finite, then the map $R/I \to S/f(I)S$ is an isomorphism. We will now show that if R/I is finite then S/f(I)S is "automatically" finite as well.

Lemma 21. Let $f: R \to S$ be as in the theorem. For any maximal ideal m in R, the ideal f(m)S in S also a maximal ideal.

Proof. Since R is finitely generated R/m is a finite field by Hilbert's Nullstellensatz. Thus $\operatorname{Hom}(S, R/m) \to \operatorname{Hom}(R, R/m)$ is a bijection and so the homomorphism $R \to R/m$ must factor through S; moreover, this factorisation is unique. Let n be the kernel of this factorisation. Then n is a maximal ideal containing f(m)Ssuch that $R/m \to S/n$ is an isomorphism. Now, let n' be any maximal ideal in S containing f(m)S. Then, the composite $R \to S \to S/n'$ factors through R/m. Thus, S/n' is a finite field extension of R/m. If this extension has degree > 1 then if q is the cardinality of R/m, the map $x \mapsto x^q$ is a non-trivial automorphism of S/n' which is identity on R/m. Thus we obtain two maps $S \to S/n'$ which restrict to the same map $R \to S/n'$ contradicting the hypothesis. Thus $R/m \to S/n'$ is an isomorphism. But then this isomorphism gives a map $S \to R/m$ which restricts to the natural map $R \to R/m$; there is a unique such map by hypothesis. Since that map has kernel n, we see that n' = n.

In other words, we see that f(m)S is contained in a unique maximal ideal n in S. Thus S/f(m)S is an Artinian ring. By the earlier discussion we see that $R/m \to S/f(m)S$ is an isomorphism. In other words f(m)S = n is a maximal ideal for every maximal ideal m in R. Conversely, if n is any maximal ideal in S, then $f^{-1}(n) = m$ is the kernel of the composite $R \to S \to S/n$ which is a map to a finite field; hence m is a maximal ideal. It follows that every maximal ideal in Sis of the form f(m)S for a maximal ideal m in R.

Now, if I is any ideal such that R/I is finite then there are finitely many maximal ideals m_1, \ldots, m_k and positive integers r_1, \ldots, r_k such that $I \supset m_1^{r_1} \cdot m_2^{r_2} \cdots m_k^{r_k}$. As seen above $n_i = f(m_i)S$ is a maximal ideal. The relations

$$f(I)S \supset f(m_1^{r_1} \cdots m_k^{r_k})S = n_1^{r_1} \cdots n_k^{r_k}$$

shows that the ring S/f(I)S is finite as well. It follows that for any ideal I such that R/I is finite, the map $R/I \to S/f(I)S$ is an isomorphism.

On the other hand suppose J is any ideal in S such that S/J is finite and let $I = f^{-1}(J)$; then R/I is a subring of S/J and thus also finite. We have seen above that this implies that $R/I \to S/f(I)S$ is an isomorphism. But the inverse image of J/f(I)S under this is the zero ideal in R/I. Thus we have J=f(I)S. To summarise,

Lemma 22. Let $f: R \to S$ be as in the conditions of the theorem. The map $I \mapsto f(I)S$ is a one-one correspondence between ideals of finite index in R and ideals of finite index in S. The map $J \mapsto f^{-1}(J)$ is the inverse correspondence from ideals I in S to ideals in R. Moreover, the natural homomorphism $R/I \to S/f(I)S$ is an isomorphism for such ideals.

Thus the original condition has been re-stated intrinsically in terms of ideals. Next we wish to prove that the given homomorphism is "closed". That is to say given a prime ideal Q in S, let m be a maximal ideal in R that contains the prime ideal $P = f^{-1}(Q)$. We wish to prove that there is a maximal ideal n in S which contains Q and satisfies $f^{-1}(n) = m$. To do this we can restrict our attention to $R/P \to S/f(Q)S$. Since $f^{-1}(f(P)S) \subset f^{-1}(Q) = P$, the latter homomorphism is also injective.

Lemma 23. Let $f: R \to S$ be an injective homomorphism of finitely generated rings with R a domain. We have a factoring of f as follows

$$R \to R[X_1, \dots, X_a] = R_1 \to R_1[t_1, \dots, t_b] = R_2 \to S$$

where

- (1) R_1 is a polynomial ring over R.
- (2) There is a non-zero element r of R_1 such that for each i, the element $rt_i \in R_2$ satisfies a monic polynomial over R_1 . Other than this relation there are no further relations among the t_i in R_2 .
- (3) $R_2 \to S$ is the quotient by an ideal that intersects R_1 in the zero ideal.

Proof. Since S is finitely generated we can choose a maximal collection of elements X_1, \ldots, X_a of S that are algebraically independent over (the quotient field of) R. Then $R_1 = R[X_1, \ldots, X_a]$ is the polynomial ring over R and is a subring of S. The remaining generators of S are algebraically dependent on the X_i 's. Thus each of them satisfies an equation of the form $r_0T^d + r_1T^{d-1} + \cdots + r_d$ for some elements r_j in R_1 . Moreover, we can assume that r_0 is non-zero in such an equation. Let r be the product in R_1 of polynomials r_0 corresponding to different generators of S. Since R is a domain, so is R_1 and the polynomial r is non-zero. For each generator S choose a polynomial of the above form with leading coefficient r (one such such clearly exists) and let R_2 be the ring obtained from R_1 by adjoining the roots of these equations. We have a natural map $R_2 \to S$; let $\mathfrak a$ be the kernel. Since $R_1 \to S$ factors through R_2 and is injective, it follows that $\mathfrak a$ intersects R_1 in the zero ideal.

Let Q_1, \ldots, Q_r be the minimal primes in S or equivalently a minimal primes in R_2 that contains the kernel of $R_2 \to S$. Since R_1 meets this kernel in the zero ideal, the intersection of the prime ideals $Q_i \cap R_1$ in R_1 is a nilpotent ideal. Since R_1 is a domain there is an index i such that $Q_i \cap R_1 = (0)$. Let Q denote the prime ideal Q_i for any such index i.

Let m be a maximal ideal in R such that r is not contained in the prime ideal $m[X_1,\ldots,X_a]$ of R_1 . Since R_1 is a domain we see that $Q_r\cap (R_1)_r$ is the zero ideal. Now, $(R_2)_r$ is a finite free module over $(R_1)_r$ and so (by the going up theorem) there is a prime ideal Q' in R_2 which contains Q and restricts to $m[X_1,\ldots,X_a]$ in R_1 . Similarly, for any maximal ideal n' in R_1 that contains $m[X_1,\ldots,X_a]$ and does not contain r, there is a maximal ideal n in R_2 that contains Q' (and hence Q) that lies over n'.

Now, if a > 0 (i. e. $R \neq R_1$) then there are at least two (in fact infinitely many) such maximal ideals n'. But then we see that we have at least two maximal ideals in S that lie over a given maximal ideal m in R contradicting lemma 22. Thus we must have $R = R_1$.

Again, if \tilde{Q} is another minimal prime in R_2 that contains the kernel of $R_2 \to S$ and such that $\tilde{Q} \cap R_1 = (0)$, then as above we can find a prime ideal \tilde{Q}' which contains \tilde{Q} and lies over m and is distinct from Q'. Now there are distinct maximal ideals n' and $\tilde{n'}$ in R_2 , that contain Q' and \tilde{Q}' respectively. This again contradicts lemma 22. It follows that there is a *unique* minimal prime Q containing the kernel of $R_2 \to S$ such that $Q \cap R = (0)$.

Now suppose that Q_0 is another minimal prime in S, or equivalently a minimal prime in R_2 that contains the kernel of $R_2 \to S$. We must have $Q_0 \cap R \neq (0)$. However, we have the lemma

Lemma 24. Let $f: R \to S$ be a homomorphism of finitely generated rings with R a domain. Let Q be a minimal prime in S such that $f^{-1}(Q)$ is non-zero. Then there is a maximal ideal n in S and an integer k such that if $m = f^{-1}(n)$, then $R/m^k \to S/n^k$ is not an isomorphism.

Proof. Let x be an element of all the minimal primes of S other than Q. Replacing S by its localisation S_x at x, we can assume that Q is the unique minimal prime in S. Then Q consists of nilpotent elements. Since $f^{-1}(Q)$ is non-zero and R is a domain it follows that $R \to S$ has a non-zero kernel. Now let n be any maximal ideal in S and $m = f^{-1}(m)$. The homomorphism of local rings $R_m \to S_n$ has a non-zero kernel. The result follows by the Artin-Rees lemma.

On the other hand, for our given homomorphism $R \to S$ we know that $R/m^k \to S$ S/n^k must be an isomorphism for all k. It follows that there is no such prime ideal

We have thus proved that there is a unique prime ideal Q in S that lies over a given prime ideal P in R and $f^{-1}(Q) = P$. The "closed"-ness condition is an immediate corollary.

Let us note that if R[X] is the polynomial ring over a ring R, then Hom(R[X], A)is naturally identified with $\operatorname{Hom}(R,A) \times A$. Thus, if $g: R[X] \to S[X]$ denotes the natural extension of the above homomorphism to the corresponding polynomial rings then, for any finite ring the induced map $\operatorname{Hom}(S[X], A) \to \operatorname{Hom}(R[X], A)$ is a bijection whenever $\operatorname{Hom}(S,A) \to \operatorname{Hom}(R,A)$ is a bijection. In particular, we can apply the above lemmas to the homomorphism g as well.

Lemma 25. Let $f: R \to S$ be as in the theorem and $g: R[X] \to S[X]$ be the induced homomorphism on polynomial rings in one variable. Let α be any element of S and b be the ideal $(X - \alpha)S[X]$ in S[X]. Let a be the ideal $g^{-1}((X - a)S[X])$. Then a contains a monic polynomial.

Proof. Let A be any ring and \mathfrak{a} be an ideal in the polynomial ring A[X]. Let \mathfrak{a}_1 denote the ideal $\mathfrak{a} \cdot A[X, X^{-1}]$ in the ring $A[X, X^{-1}]$. We have

$$\mathfrak{a}_1 = \{P(X) \cdot X^{-n} | P(X) \in \mathfrak{a} \text{ and } n \ge 0 \text{ an integer } \}$$

Let \mathfrak{a}_2 be the restriction $\mathfrak{a}_1 \cap A[X^{-1}]$ of this ideal to $A[X^{-1}]$. We have

$$\mathfrak{a}_2 = \{P(X) \cdot X^{-d} | P(X) \in \mathfrak{a} \text{ and } d = \deg(P(X))\}$$

The content $c(\mathfrak{a})$ of the ideal \mathfrak{a} is defined as the image of \mathfrak{a}_2 in $A[X^{-1}]/(X^{-1}) = A$.

$$c(\mathfrak{a}) = \{a \in A | \exists P(X) \in \mathfrak{a} \text{ such that } P(X) = aX^d + \text{ lower degree terms } \}$$

Returning to the rings R and S let us use the subscripts 1 and 2 to denote the above constructions applied to ideals in R[X] and S[X]; specifically to the ideals \mathfrak{a} and $\mathfrak{b}.$

We want to show that the content $c(\mathfrak{a})$ of the ideal \mathfrak{a} in R[X] is the unit ideal. Suppose that $c(\mathfrak{a}) \subset m$ for some maximal ideal m in R. The ideal $\tilde{m} = m[X^{-1}] +$ $X^{-1}R[X^{-1}]$ is then a maximal ideal in $R[X^{-1}]$ which contains \mathfrak{a}_2 . Moreover, by the above description of \mathfrak{a}_2 it is clear that $\mathfrak{a}_2 = g_2^{-1}(\mathfrak{b}_2)$, where $g_2 : R[X^{-1}] \to S[X^{-1}]$ is the natural homomorphism. Applying the "going-up" which has been proved above, it follows that there should exist a prime ideal \tilde{p} containing \mathfrak{b}_2 such that $g_2^{-1}(\tilde{p}) = \tilde{m}$. But \mathfrak{b}_2 is the ideal generated by $1 - \alpha X^{-1}$ and X^{-1} lies in \tilde{m} . Thus \tilde{p}

would have to be the unit ideal which contradicts its primality. It follows that $c(\mathfrak{a})$ is the unit ideal. \Box

From this lemma we see that S is integral over R. Now the result that $R/m \to S/f(m)S$ is an isomorphism for all maximal ideals m implies theorem 18 by Nakayama's lemma.