Indian Institute of Science Education and Research, Mohali Sector 81, S. A. S. Nagar, Manauli PO, Mohali, 140306. FIRS T S EMES TER 2012-2013 Course Handout

Date: 07/08/2014

Course No : CHM607 Course Title : CHEMICAL CRYSTALLOGRAPHY Instructor : Angshuman Roy Choudhury Tutor : Angshuman Roy Choudhury

1. Scope and Objective of the Course: The course has been designed to give an overview of chemical crystallography. The course will highlight the topics such as symmetry in crystallography, crystals systems, Bravais lattices, crystal symmetry, crystallographic point groups and space groups, Miller indices, theory of X-ray diffraction, data collection, data reduction, structure factors and Fourier syntheses, Phase problem, direct methods, Patterson method, crystal structure refinement etc. The course will also highlight the application of single crystal and powder X-ray diffraction techniques and will include hand on training on crystal structure solution and refinement.

2. Text Book : X-ray structure determination: A Practical Guide (2nd Ed.) by George H. Stout and Lyle H Jensen, Wiley-Interscience, New York, 1989.

3. Reference Books : (1) Fundamentals of Crystallography (2^{nd} Ed.) by C. Giacovazzo, Oxford University Press, USA, 2002; (2) X-ray analysis and The Structure of Organic Molecules (2^{nd} Ed.) Wiley-VCH, New York, 1996; (3) Chemical Applications of Group Theory (3^{rd} Ed.) by F. A. Cotton, Wiley-India Edition, India, 2009.

	. Course I fail .			
Lect. No	Topics	Learning Objectives		
1	Introduction	Introduction to Chemical Crystallography		
2-10	Cry stallographic	Introduction, 1D symmetry, Concept of 2D symmetry and lattices,		
	Symmetry	notations of symmetry elements, space groups in 2D, 3D lattices,		
		point groups and their notations, stereographic projections, Lau		
		symmetry; glide planes, screw axes and their notations, space groups, equivalent points, space group symmetry diagrams etc. Miller Indices,		
		crystallographic planes and directions, close pack structures, linear		
		density, planar density, Miller-Bravais indices for hexagonal systems,		
		various ceramic structures (NaCl, ZnS, CaF ₂ , CsCl etc.)		
11-16	Theory of X-ray	What is X-ray, generation and classification of X-ray, X-ray sources,		
	diffraction	diffraction of X-rays, Bragg's law, the reciprocal lattice, reciproca		
		relationship, Bragg's law in reciprocal space, Ewald's sphere, Laue		
		Method, Oscillation, rotation and precession methods.		
17-20	Data reduction	L-P corrections, structure factor, scaling, interpretation of intensity		
		data, temperature factor, symmetry from intensity statistics, structure		
		factor and Fourier synthesis, Friedel's law; exponential, vector and		
		general forms of structure factor, determination of systematic		
		absences for various symmetry or lattice centering, FFT, Anomalous		
		scattering.		

4. Course Plan :

21-24	The Phase Problem	Definition, Direct Methods, structure invariants and semi invariants,			
21-24	The Fliase Floblem				
		probability methods, Phase determination in practice, Patterson			
		Methods, Patterson Symmetry, completion of structure solution, ΔF			
		synthesis.			
25-27	Refinement of	Refinement by Fourier synthesis, refinement by ΔF synthesis,			
	Crystal Structure	Refinement by least squares method, weighting functions, Goodness-			
		Of-Fit (GOF) parameter, treatment of non-hydrogen atoms, and			
		treatment of hydrogen atoms.			
28-32	Practical example	Crystal selection, indexing of crystals, data collection, data reduction,			
		space group determination, structure solution and refinement using			
		SHELXS97 and SHELXL97, introduction to crystallographic			
		packages (APEX II suite, OLEX2, WinGx, PLATON) and IUCr			
		validation of the data.			
33-37	Powder X-ray	Methodology, geometrical basis of powder X-ray diffraction,			
	diffraction (PXRD)	applications of PXRD (determination of accurate lattice parameters,			
	× ,	identification of new/unknown phases, applications in pharmaceutical			
		industry, structure solution from PXRD etc.), Reitveld method for			
		structure refinement, indexing of PXRD, handling of PXRD using			
		DASH.			
20.40					
38-40	Neutron and Electron	Basics of neutron and electron diffraction and their applications.			
	Diffraction				

5. Evaluation Scheme:

Component	Duration	Marks	Weightage%	Remarks
Mid Sem. I	1hr	40	20%	Closed Book
Mid Sem. II	1hr	40	20%	Closed Book
Tutorials [*]		20 x 4	20%	Closed Book
End Sem. Examination	3 hrs.	100	40%	Closed Book
Examination				

***Tutorials** : The tutorial hours are designated for quick review of the highlights of the material covered in the lectures, clarification of doubts, and problem solving. Further, set of problems will be assigned periodically, of which the instructor will specify one to be solved by the students in the tutorial hour of the following week. The second method of evaluation in tutorial will be of a test based on the lectures covered recently. There will likely be tutorial test/quiz of 20 marks in any four tutorial classes.

6. Office Consultation Hours : Wednesday 3:00-4:00 p.m.

7. **Notices** : Notices, if any, concerning the course will be displayed on the Notice Board of Hostel 5 and Hostel 7 and e-mail will also be sent to all the students

Instructor CHM 607